98%
921
2 minutes
20
Considered as the next-generation biomarkers, microRNAs play an important role in the early diagnosis of cancers. Here, we designed a fluorescent signal "removal" sensor for one-step, sensitive and specific detection of multiple microRNAs by flow cytometry (FCM). In this work, single-stranded DNA (ssDNA), working as the interlinkage, immobilized the fluorescent nanosphere (FS) onto the SiO microspheres surface to form the SiO-ssDNA-FS probes. When target miRNAs integrated with SiO-ssDNA-FS probes, the duplex-specific nuclease (DSN) could cleave the ssDNA selectively and release FS with numerous cycles to enhance the fluorescent signal attenuation of SiO-ssDNA-FS, so as to remarkably improve the analysis sensitivity. It achieved a simple, accurate and quantitative microRNA-21 detection for clinical blood samples. Parallel multi-target detection of microRNA-21 and Let-7d was also realized by different color labeled FS. Moreover, our designed sensor was suitable for other targets' detection with the corresponding probes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2019.110570 | DOI Listing |
ChemMedChem
September 2025
Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany.
The transcription factor signal transducer and activator of transcription (STAT)4 is a potential target for autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and diabetes mellitus. p-Biphenyl phosphate is reported as an inhibitor of the STAT4 Src homology 2 domain, and it is developed to the phosphonate-based inhibitor Stafori-1. Herein, structure-activity relationships of p-biaryl phosphates against STAT4 and their selectivity profiles against other STAT proteins are reported.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.
View Article and Find Full Text PDFJ Cell Biol
November 2025
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Phosphatidic acid (PA) regulates lipid homeostasis and vesicular trafficking, yet high-affinity tools to study PA in live cells are lacking. We identified the lipin-like sequence of Nir1 (PILS-Nir1) as a candidate PA biosensor based on structural analysis of Nir1's LNS2 domain. Using liposome-binding assays and pharmacological and genetic manipulations in HEK293A cells expressing fluorescent PILS-Nir1, we found that while PILS-Nir1 binds PA and PIP2in vitro, only PA is necessary and sufficient for membrane localization in cells.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
Local pH variations play a pivotal role in numerous critical biological processes. However, achieving the tunability and selectivity of pH detection remains a challenge. Here, we present a DNA-based strategy that enables programmable and selective pH responses, which is termed shadow-strand hybridization-actuated displacement engineering (SHADE).
View Article and Find Full Text PDFBackground: The white cell precursor (WPC) channel of the Sysmex XN-series hematology analyzer, which is designed for blast detection, showed reduced sensitivity for blast detection in leukopenic patients undergoing chemotherapy. This study aimed to evaluate the gating region for apoptotic blasts in the WPC scattergram to enhance detection sensitivity.
Methods: NOMO-1 cells, a human acute monoblastic leukemia cell line, were treated with varying concentrations of cytarabine (0, 100, 500, and 1,000 nM) for three days to induce apoptosis.