3-Weeks of Exercise Training Increases Ischemic-Tolerance in Hearts From High-Fat Diet Fed Mice.

Front Physiol

Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.

Published: October 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Physical activity is an efficient strategy to delay development of obesity and insulin resistance, and thus the progression of obesity/diabetes-related cardiomyopathy. In support of this, experimental studies using animal models of obesity show that chronic exercise prevents the development of obesity-induced cardiac dysfunction (cardiomyopathy). Whether exercise also improves the tolerance to ischemia-reperfusion in these models is less clear, and may depend on the type of exercise procedure as well as time of initiation. We have previously shown a reduction in ischemic-injury in diet-induced obese mice, when the exercise was started prior to the development of cardiac dysfunction in this model. In the present study, we aimed to explore the effect of exercise on ischemic-tolerance when exercise was initiated after the development obesity-mediated. Male C57BL/6J mice were fed a high-fat diet (HFD) for 20-22 weeks, where they were subjected to high-intensity interval training (HIT) during the last 3 weeks of the feeding period. Sedentary HFD fed and chow fed mice served as controls. Left-ventricular (LV) post-ischemic functional recovery and infarct size were measured in isolated perfused hearts. We also assessed the effect of 3-week HIT on mitochondrial function and myocardial oxygen consumption (MVO). Sedentary HFD fed mice developed marked obesity and insulin resistance, and demonstrated reduced post-ischemic cardiac functional recovery and increased infarct size. Three weeks of HIT did not induce cardiac hypertrophy and only had a mild effect on obesity and insulin resistance. Despite this, HIT improved post-ischemic LV functional recovery and reduced infarct size. This increase in ischemic-tolerance was accompanied by an improved mitochondrial function as well as reduced MVO. The present study highlights the beneficial effects of exercise training with regard to improving the ischemic-tolerance in hearts with cardiomyopathy following obesity and insulin resistance. This study also emphasizes the exercise-induced improvement of cardiac energetics and mitochondrial function in obesity/diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783811PMC
http://dx.doi.org/10.3389/fphys.2019.01274DOI Listing

Publication Analysis

Top Keywords

obesity insulin
16
insulin resistance
16
fed mice
12
functional recovery
12
infarct size
12
mitochondrial function
12
exercise training
8
ischemic-tolerance hearts
8
high-fat diet
8
cardiac dysfunction
8

Similar Publications

[Tirzepatide (Mounjaro®) : a GIP/GLP-1 receptor dual agonist for the treatment of type 2 diabetes].

Rev Med Liege

September 2025

Service de Diabétologie, Nutrition et Maladies métaboliques, CHU Liège, Belgique.

Tirzepatide is a unimolecular dual agonist of both glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors, recently commercialized and reimbursed in Belgium for the treatment of type 2 diabetes (T2D). Because of the complementarity of action of the two incretins, tirzepatide showed, in a dose-dependent manner (5, 10 and 15 mg as a once-weekly subcutaneous injection), a better efficacy (greater reduction in HbA1c and body weight) compared with placebo, semaglutide 1 mg, basal insulin and preprandial boluses of insulin lispro in six studies of the SURPASS programme. Tirzepatide tolerance is almost similar to that of pure GLP-1 receptor agonists, with digestive adverse events, most often during the first weeks after initiation, which justifies the recommendation of progressive titration every four weeks.

View Article and Find Full Text PDF

Objective: This secondary analysis was conducted to compare the magnitude of adaptive thermogenesis (AT) following hypocaloric low-carbohydrate (CHO) versus low-fat diets in African American (AA) women.

Methods: Sixty-nine AA women with obesity were randomized to low-CHO or low-fat hypocaloric diets for 10 weeks, followed by a 4-week weight stabilization period (all food provided). At baseline and Week 13, insulin sensitivity (S) was measured by intravenous glucose tolerance test, body composition by bioimpedance analysis, total energy expenditure (EE) (TEE) by doubly labeled water, and resting EE (REE) by indirect calorimetry.

View Article and Find Full Text PDF

regulates early postnatal DPP4 preadipocyte pool expansion.

Genes Dev

September 2025

RU Adipocytes and Metabolism, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany;

Adipose tissue is rapidly expanding early in life. Elucidating the queues facilitating this process will advance our understanding of metabolically healthy obesity. Using single-cell RNA sequencing, we identified compositional differences of prewean and adult murine subcutaneous adipose tissue.

View Article and Find Full Text PDF

Oxymatrine attenuates the type 1 diabetes mellitus via negative regulation of the follicular helper T cells.

Eur J Pharmacol

September 2025

Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China. Electronic address:

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder in which autoantibodies cause the immune system to attack and destroy pancreatic β-cells, leading to insufficient insulin production and impaired blood glucose control. T follicular helper (Tfh) cells are recognized as a group of CD4 T cells that help B cells to produce high-affinity antibodies. Our previous research found that oxymatrine (OMT) exhibits excellent immunomodulatory properties on Tfh cells in autoimmune diseases.

View Article and Find Full Text PDF

Loss of hepatic ME1 ameliorates MASLD by Suppressing peroxisomal β-Oxidation and Activating Lipophagy/Lipolysis.

J Adv Res

September 2025

School of Public Health and Nursing, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China. Electronic address:

Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents an increasing global health problem in association with obesity and insulin resistance without approved pharmacotherapy. Previous studies revealed malic enzyme 1 (ME1) as a susceptibility gene for metabolic disorders in humans. However, the role and mechanisms of ME1 in regulating hepatic lipid metabolism remain largely unclear.

View Article and Find Full Text PDF