A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The structural basis of acid resistance in : insights from multiple pH regime molecular dynamics simulations. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dormant is evolved to develop the tolerance against the acidification of phagolysosome by the action of gamma interferon. The molecular mechanism responsible for the development of the resistance towards the acidic conditions in is not fully understood. Therefore, the current analysis was performed which studies the mechanism of acid tolerance by correlating the alteration in the protonation state of conserved residues in virulent proteins with changes in their folding states. The pH dependencies of proteins were studied using an efficient computational scheme which enables the understanding of their conformational behavior by molecular dynamics (MD) simulations. The adopted methodology involves cyclically updating of the ionization states of titrable residues in the studied proteins with conventional MD steps, which were applied to the newly generated ionization configuration. Significant pH-dependent protein structural stability parameters consistent with the changes of the protonation states of conserved residues were observed. Among the studied proteins, the peptidoglycan binding protein ompATB, carboxylesterase LipF and two-component systems' transcriptional regulator PhoP showed highest structural conservation in the observed acidic pH range throughout the course of MD simulations. The current study provides a better understanding of acid tolerance mechanisms present in and can facilitate the drug development strategies against the dormant protein targets.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2019.1682676DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
dynamics simulations
8
acid tolerance
8
conserved residues
8
studied proteins
8
structural basis
4
basis acid
4
acid resistance
4
resistance insights
4
insights multiple
4

Similar Publications