Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: This study aimed to design and evaluate a high-speed online steady-state visually evoked potential (SSVEP)-based brain-computer interface (BCI) in an optical see-through (OST) augmented reality (AR) environment.
Approach: An eight-class BCI was designed in an OST-AR headset which is wearable and allows users to see the user interface of the BCI and the device to be controlled in the same view field via the OST head-mounted display. The accuracies, information transfer rates (ITRs), and SSVEP signal characteristics of the AR-BCI were evaluated and compared with a computer screen-based BCI implemented with a laptop in offline and online cue-guided tasks. Then, the performance of the AR-BCI was evaluated in an online robotic arm control task.
Main Results: The offline results obtained during the cue-guided task performed with the AR-BCI showed maximum averaged ITRs of 65.50 ± 9.86 bits min according to the extended canonical correlation analysis-based target identification method. The online cue-guided task achieved averaged ITRs of 65.03 ± 11.40 bits min. The online robotic arm control task achieved averaged ITRs of 45.57 ± 7.40 bits min. Compared with the screen-based BCI, some limitations of the AR environment impaired BCI performance and the quality of SSVEP signals.
Significance: The results showed the potential for providing a high-performance brain-control interaction method by combining AR and BCI. This study could provide methodological guidelines for developing more wearable BCIs in OST-AR environments and will also encourage more interesting applications involving BCIs and AR techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/ab4dc6 | DOI Listing |