A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identification of Genes/Proteins Related to Submergence Tolerance by Transcriptome and Proteome Analyses in Soybean. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flooding can lead to yield reduction of soybean. Therefore, identification of flooding tolerance genes has great significance in production practice. In this study, Qihuang 34, a highly-resistant variety to flooding stress, was selected for submergence treatments. Transcriptome and proteome analyses were conducted, by which twenty-two up-regulated differentially expressed genes (DEGs)/differentially expressed proteins (DEPs) associated with five KEGG pathways were isolated. The number of the DEGs/DEPs enriched in glycolysis/gluconeogenesis was the highest. Four of these genes were confirmed by RT-qPCR, suggesting that glycolysis/gluconeogenesis may be activated to generate energy for plant survival under anaerobic conditions. Thirty-eight down-regulated DEGs/DEPs associated with six KEGG pathways were identified under submergence stress. Eight DEGs/DEPs enriched in phenylpropanoid biosynthesis were assigned to peroxidase, which catalyzes the conversion of coumaryl alcohol to hydroxy-phenyl lignin in the final step of lignin biosynthesis. Three of these genes were confirmed by RT-qPCR. The decreased expression of these genes led to the inhibition of lignin biosynthesis, which may be the cause of plant softening under submergence stress for a long period of time. This study revealed a number of up-/down-regulated pathways and the corresponding DEGs/DEPs, by which, a better understanding of the mechanisms of submergence tolerance in soybean may be achieved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789146PMC
http://dx.doi.org/10.1038/s41598-019-50757-1DOI Listing

Publication Analysis

Top Keywords

submergence tolerance
8
transcriptome proteome
8
proteome analyses
8
associated kegg
8
kegg pathways
8
degs/deps enriched
8
genes confirmed
8
confirmed rt-qpcr
8
submergence stress
8
lignin biosynthesis
8

Similar Publications