Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present experimental and theoretical studies of a metamaterial-based plasmonic structure to build a plasmonic-molecular coupling detection system. High molecular sensitivity is realized only when molecules are located in the vicinity of the enhanced field (hot spot region); thus, introducing target molecules in the hot spot region to maximize plasmonic-molecular coupling is crucial to developing the sensing technology. We design a metamaterial consisting of a vertically oriented metal insulator metal (MIM) structure with a 25 nm channel sandwiched between two metal films, which enables the delivery of molecules into the large ravinelike hot spot region, offering an ultrasensitive platform for molecular sensing. This metamaterial is applied to carbon dioxide and butane detection. We design the structure to exhibit resonances at 4033 and 2945 cm, which overlap with the C═O and -CH vibration modes, respectively. The mutual coupling of these two resonance modes creates a Fano resonance, and their distinct peaks are clearly observed in the corresponding transmission dips. In addition, owing to its small footprint, such a vertical-oriented MIM structure enables us to increase the integration density and allows the detection of a 20 ppm concentration with negligible background noise and high selectivity in the mid-infrared region.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.9b01225DOI Listing

Publication Analysis

Top Keywords

hot spot
16
spot region
16
plasmonic structure
8
plasmonic-molecular coupling
8
mim structure
8
structure
5
region
5
ultrasensitive selective
4
selective gas
4
gas sensor
4

Similar Publications

Large interstitial telomeric regions are considered remnants and markers of chromosomal rearrangements or a result of several suggested molecular mechanisms of telomere repeats accumulation. More rare are cases when large interstitial repeats are found not close to, but at a distance from the centromere. However, synapsis, recombination, and effects on chromatin near these regions during meiotic prophase I have not been sufficiently studied.

View Article and Find Full Text PDF

Time Allotted for Examination Item Types in Nursing Education.

J Nurs Educ

September 2025

Wolters Kluwer Health, New York, New York; and.

Background: Examinations are used widely in nursing education to evaluate knowledge attainment. New item types were initiated in April 2023 by the National Council of State Boards of Nursing (NCSBN) for use on the Next Generation National Council Licensure Examination for Registered Nurses (NGN NCLEX-RN). Little evidence exists for how much time is needed for exams that use the new item types.

View Article and Find Full Text PDF

At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.

View Article and Find Full Text PDF

Interference-free SERS tags for copper ion sensing upon hypoxia by in situ hot-spot generation.

Talanta

August 2025

School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, PR China. Electronic address:

Abnormal cellular Cu level is closely associated with many various pathological conditions, including cancer, Menkes disease, and Wilson's disease. However, sensitive and accurate detection of intracellular Cu remains challenging. To address this, we engineered an interference-free surface-enhanced Raman scattering (SERS) nanoprobe utilizing a target-responsive aggregation mechanism for selective Cu detection.

View Article and Find Full Text PDF

Bisphenol analogues and phthalate acid esters are well-known endocrine disruptors. Information on detailed distribution and partitioning of Bisphenol A (BPA) and Phthalate acid esters (PAEs) in port sediments is essential for a better understanding of their residence time in sediment, influence of anthropogenic activities in port, and port sustainability, especially in terms of environmental impact. Herein, this study determined the concentrations of BPA and PAEs in sediments that are collected from 38 stations from Istanbul ship-ports and scrutinized distribution, possible source identification and potential environmental risk assessment.

View Article and Find Full Text PDF