98%
921
2 minutes
20
Extreme rarity and inherent heterogeneity of circulating tumor cells (CTCs) result in a tremendous challenge for the CTC isolation from patient blood samples with high efficiency and purity. Current CTC isolation approaches mainly rely on the epithelial cell adhesion molecule (EpCAM), which may significantly reduce the ability to capture CTCs when the expression of EpCAM is lost or down-regulated in epithelial-mesenchymal transition. Here, a rapid and highly efficient method is developed to isolate and identify heterogeneous CTCs with high efficiency from patient blood samples using the fluorescent-magnetic nanoparticles (F-MNPs). A dual-antibody interface targeting EpCAM and N-cadherin is fabricated onto the F-MNPs to capture epithelial CTCs as well as mesenchymal CTCs from whole blood samples. The poly(carboxybetaine methacrylate) brushes of excellent antifouling properties are employed to decrease nonspecific cell adhesion. Moreover, the F-MNPs provide a prompt identification strategy for heterogeneous CTCs (F-MNPs+, Hoechst 33342+, and CD45-) that can directly identify CTCs in a gentle one-step processing within 1 h after isolation from patient blood samples. This has been demonstrated through artificial samples as well as patient samples in details.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b14051 | DOI Listing |
Nutr J
September 2025
Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
Background: Avenanthramides (AVAs) and Avenacosides (AVEs) are unique to oats (Avena Sativa) and may serve as biomarkers of oat intake. However, information regarding their validity as food intake biomarkers is missing. We aimed to investigate critical validation parameters such as half-lives, dose-response, matrix effects, relative bioavailability under single dose, and in relation to the abundance of Feacalibacterium prausnitzii, and under repeated dosing, to understand the potential applications of AVAs and AVEs as biomarkers of oat intake.
View Article and Find Full Text PDFBMC Vet Res
September 2025
Veterinary Internal Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
Background: Disturbances in lipid metabolism are usually associated with hyperlipidemia, which is commonly observed in donkeys with inappetence or anorexia. The diagnostic utility of ultrasound measurements of croup fat thickness (CFT) and relative liver echogenicity for lipomobilization in donkeys with fasting-induced hyperlipidemia was investigated. A prospective observational control study involving 25 donkeys was conducted, and the animals were randomly assigned to a fasting group (FG, n = 20) and a control group (CG, n = 5).
View Article and Find Full Text PDFBMC Infect Dis
September 2025
Department of Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
Background: Serratia marcescens is an opportunistic pathogen increasingly associated with healthcare-associated infections and rising antimicrobial resistance. The emergence of multidrug-resistant (MDR) and carbapenem-resistant S. marcescens (CRSM) presents significant therapeutic challenges.
View Article and Find Full Text PDFGenome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDF