98%
921
2 minutes
20
Adeno-associated virus (AAV) vectors have shown promising results in preclinical models, but the genomic consequences of transduction with AAV vectors encoding CRISPR-Cas nucleases is still being examined. In this study, we observe high levels of AAV integration (up to 47%) into Cas9-induced double-strand breaks (DSBs) in therapeutically relevant genes in cultured murine neurons, mouse brain, muscle and cochlea. Genome-wide AAV mapping in mouse brain shows no overall increase of AAV integration except at the CRISPR/Cas9 target site. To allow detailed characterization of integration events we engineer a miniature AAV encoding a 465 bp lambda bacteriophage DNA (AAV-λ465), enabling sequencing of the entire integrated vector genome. The integration profile of AAV-465λ in cultured cells display both full-length and fragmented AAV genomes at Cas9 on-target sites. Our data indicate that AAV integration should be recognized as a common outcome for applications that utilize AAV for genome editing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769011 | PMC |
http://dx.doi.org/10.1038/s41467-019-12449-2 | DOI Listing |
Clin Appl Thromb Hemost
September 2025
Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.
View Article and Find Full Text PDFNeurobiol Dis
September 2025
Mudanjiang Collaborative Innovation Center for development and application of Northern Medicine Resources, Mudanjiang, PR China; Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang, PR China. Electronic address:
Spinal cord injury (SCI) causes irreversible motor deficits due to disrupted lumbar circuitry. However, transcriptional mechanisms in distal lumbar circuits are poorly understood. We identify POU6F1 as a critical transcriptional regulator in spinal lumbar segment (SLS, L3-L5) motor circuit regeneration.
View Article and Find Full Text PDFFront Immunol
September 2025
Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
Adeno-associated virus (AAV) gene therapy is often limited by pre-existing neutralizing antibodies (NAbs), yet current assays for NAb detection lack standardization and rarely quantify uncertainty, complicating cross-study comparisons. We present coreTIA (core Transduction Inhibition Assay), a comprehensive framework providing a modular experimental protocol and a statistically robust analysis pipeline. This integrated method delivers precise, reproducible NAb titers with quantified uncertainty for every result.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Research & Development Center "Kazakhstan Engineering" LLP, Astana 010000, Kazakhstan.
This study addresses the selection and application of composite materials for aerospace systems operating in extreme environmental conditions, with a particular focus on high-altitude pseudo-satellites (HAPS). This research is centered on the development of a 400 kg autonomous aerial vehicle (AAV) capable of sustained operations at altitudes of up to 30 km. KMU-3's microstructure, comprising high-modulus carbon fibers (5-7 µm diameter) in a 5-211B epoxy matrix, provides a high specific strength (1000-2500 MPa), low density (1.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland.
Myopathies and muscular dystrophies are a diverse group of rare or ultra-rare diseases that significantly impact patients' quality of life and pose major challenges for diagnosis and treatment. Despite their heterogeneity, many share common molecular mechanisms, particularly involving sarcomeric dysfunction, impaired autophagy, and disrupted gene expression. This review explores the genetic and pathophysiological foundations of major myopathy subtypes, including cardiomyopathies, metabolic and mitochondrial myopathies, congenital and distal myopathies, myofibrillar myopathies, inflammatory myopathies, and muscular dystrophies.
View Article and Find Full Text PDF