Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The effective assessment of platelet activation is an important component of the evaluation of cardiovascular implants. Currently, most evaluation is performed based on the ISO 10993-4 international standard. However, the methods specified in this standard were originally designed for non-degradable materials, and the applicability of these methods to evaluate degradable materials has not been carefully assessed. Here, the platelet activation response was evaluated (using blood from health rabbits) for three typical degradable materials (collagen, polylactic acid, and hydroxyapatite) by measuring the widely used molecular markers CD62 P, CD63, and CD40 L and the three molecular markers PF4, β-TG, and TXB2 that are referenced in the ISO 10993-4 standard. The variations of these six markers were compared in the simulated degradation of the three test materials. The results showed differences in platelet activation with degradation that were strongly related to the surface physicochemical properties. Changes in the surface roughness and contact angle of the materials correlated with changes in the degree of platelet activation. The six tested platelet activation molecular markers show promise for assessment of platelet function in degradable medical devices, providing guidance for quality control strategies and the design and improvement of safe medical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2019.110516 | DOI Listing |