Effects of Orientations, Aspect Ratios, Pavement Materials and Vegetation Elements on Thermal Stress inside Typical Urban Canyons.

Int J Environ Res Public Health

TECNALIA, Energy and Environmental Division, Parque Tecnologico de Bizkaia, Edificio 700, 48160 Derio, Bizkaia, Spain.

Published: September 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The analysis of local climate conditions to test artificial urban boundaries and related climate hazards through modelling tools should become a common practice to inform public authorities about the benefits of planning alternatives. Different finishing materials and sheltering objects within urban canyons (UCs) can be tested, predicted and compared through quantitative and qualitative understanding of the relationships between the microclimatic environment and subjective thermal assessment. This process can work as support planning instrument in the early design phases as has been done in this study that aims to analyze the thermal stress within typical UCs of Bilbao (Spain) in summertime through the evaluation of Physiologically Equivalent Temperature using . The UCs are characterized by different orientations, height-to-width aspect ratios, pavement materials, trees' dimensions and planting pattern. Firstly, the current situation was analyzed; secondly, the effects of asphalt and red brick stones as streets' pavement materials were compared; thirdly, the benefits of vegetation elements were tested. The analysis demonstrated that orientation and aspect ratio strongly affect the magnitude and duration of the thermal peaks at pedestrian level; while the vegetation elements improve the thermal comfort up to two thermophysiological assessment classes. The outcomes of this study, were transferred and visualized into green planning recommendations for new and consolidated urban areas in Bilbao.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801860PMC
http://dx.doi.org/10.3390/ijerph16193574DOI Listing

Publication Analysis

Top Keywords

pavement materials
12
vegetation elements
12
aspect ratios
8
ratios pavement
8
thermal stress
8
urban canyons
8
thermal
5
effects orientations
4
orientations aspect
4
materials
4

Similar Publications

Photochemical Production of Singlet Oxygen by Toronto Road Dust.

Environ Sci Technol

September 2025

Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.

Road dust, which consists of brake and tire wear, pavement particles, crustal material, semivolatile vehicle exhaust components, and natural organic matter, can contribute to both airborne particulate matter and urban runoff. To date, research has mainly focused on the health impact of road dust, but little work has been conducted to characterize its role as a reactive surface in the environment. Our group has previously shown that illuminated road dust is a source of singlet oxygen, an important environmental oxidant.

View Article and Find Full Text PDF

Superhydrophobic and Anti-Icing Coatings on Asphalt Pavements: A Review.

ACS Omega

August 2025

Renewable Energy Laboratory, National Laboratory Astana (NLA), Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan.

Ice formation on asphalt roads poses severe safety hazards and maintenance issues, especially in cold climates. Traditional deicing methods are typically energy intensive, environmentally adversive, and economically inadvisable. Alternative superhydrophobic coatings (SHCs) have emerged as promising passive anti-icing solutions.

View Article and Find Full Text PDF

Foreign Object Debris (FOD) on airport pavements poses a serious threat to aviation safety, making accurate detection and interpretable scene understanding crucial for operational risk management. This paper presents an integrated multi-modal framework that combines an enhanced YOLOv7-X detector, a cascaded YOLO-SAM segmentation module, and a structured prompt engineering mechanism to generate detailed semantic descriptions of detected FOD. Detection performance is improved through the integration of Coordinate Attention, Spatial-Depth Conversion (SPD-Conv), and a Gaussian Similarity IoU (GSIoU) loss, leading to a 3.

View Article and Find Full Text PDF

Vehicle load is crucial for road design, maintenance, and expansion, while vehicle speed and lateral position are essential for traffic management and driving safety. This paper introduces a method for collecting vehicle speed, lateral position, and load information using roadside Micro-Electromechanical Systems (MEMS) accelerometers located on the pavement. Firstly, this research analyzes the distribution of pavement vibration responses in both lateral and vertical directions based on the Finite Element Method (FEM) data provided in the literature.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbon (PAH) derivatives, specifically azaarenes and nitrated and oxygenated PAHs, are emerging contaminants of concern due to their increased toxicity and persistence compared to the parent PAHs. Despite their toxicity, their simultaneous analysis in complex matrices, such as in fumes emitted from bituminous mixtures, remains challenging due to limitations of conventional analytical techniques. To address this, an advanced methodology was developed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS Orbitrap Eclipse) equipped with an APCI source for the simultaneous identification and quantification of 14 PAH derivatives.

View Article and Find Full Text PDF