Allometry of mitochondrial efficiency is set by metabolic intensity.

Proc Biol Sci

Laboratoire des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France.

Published: September 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabolic activity sets the rates of individual resource uptake from the environment and resource allocations. For this reason, the relationship with body size has been heavily documented from ecosystems to cells. Until now, most of the studies used the fluxes of oxygen as a proxy of energy output without knowledge of the efficiency of biological systems to convert oxygen into ATP. The aim of this study was to examine the allometry of coupling efficiency (ATP/O) of skeletal muscle mitochondria isolated from 12 mammal species ranging from 6 g to 550 kg. Mitochondrial efficiencies were measured at different steady states of phosphorylation. The efficiencies increased sharply at higher metabolic rates. We have shown that body mass dependence of mitochondrial efficiency depends on metabolic intensity in skeletal muscles of mammals. Mitochondrial efficiency positively depends on body mass when mitochondria are close to the basal metabolic rate; however, the efficiency is independent of body mass at the maximum metabolic rate. As a result, it follows that large mammals exhibit a faster dynamic increase in ATP/O than small species when mitochondria shift from basal to maximal activities. Finally, the invariant value of maximal coupling efficiency across mammal species could partly explain why scaling exponent values are very close to 1 at maximal metabolic rates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784735PMC
http://dx.doi.org/10.1098/rspb.2019.1693DOI Listing

Publication Analysis

Top Keywords

mitochondrial efficiency
12
body mass
12
metabolic intensity
8
coupling efficiency
8
mammal species
8
metabolic rates
8
metabolic rate
8
efficiency
7
metabolic
7
allometry mitochondrial
4

Similar Publications

This study investigates the effects of L-carnitine on nuclear maturation and fertilization in cattle and goat oocytes. Ovaries were collected from females with poor reproductive efficiency in the tropical climate, and cumulus-oocyte complexes (COCs) were retrieved from large antral follicles. COCs were cultured with varying concentrations of L-carnitine (0, 0.

View Article and Find Full Text PDF

A new water soluble mitochondria targeted ESIPT active acylhydrazone for the specific detection of Zn and S ions and bioimaging in HeLa cells.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción, Chile. Electronic address:

The development of multifunctional fluorescent organic materials capable of selective ion detection, subcellular targeting, and logical operations is a burgeoning area in chemical biology and materials science. Herein, we report the design and development of a novel acylhydrazone based fluorescent ligand (HSN·Cl), which exhibits a distinct "turn-on" emission response toward Zn ions and a subsequent "turn-off" response in the presence of sulfide ions (S). The molecular design incorporates structural elements that facilitate the ESIPT feature, conferring the probe with unique photophysical properties.

View Article and Find Full Text PDF

The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.

View Article and Find Full Text PDF

Efficiency of the cytochrome c oxidase subunit II gene for the delimitation of termite species (Blattodea: Isoptera) in the state of Paraíba, northeastern Brazil.

PLoS One

September 2025

Laboratório de Termitologia, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.

With the aim of expanding the possibilities of identifying termite species, in the present study we generated genetic data based on sequences of the mitochondrial gene encoding cytochrome c oxidase subunit II (COII) for termites (Blattodea: Isoptera) occurring in the state of Paraíba, northeastern Brazil. The genetic data were obtained from 135 COII sequences identified in 28 genera and 48 species. These are the first COII sequences for 15 taxa (31.

View Article and Find Full Text PDF

Acute lung injury (ALI) represents a critical clinical challenge characterized by uncontrolled pulmonary inflammation and disrupted tissue homeostasis, often leading to severe respiratory dysfunction. Current pharmacological interventions and vaccines have demonstrated suboptimal clinical outcomes in modulating disease progression, highlighting the urgent need for innovative therapeutic strategies. A key pathophysiological feature of ALI involves dysregulation of redox homeostasis and excessive pulmonary inflammation.

View Article and Find Full Text PDF