98%
921
2 minutes
20
Traumatic brain injury (TBI) is a major public health concern in the USA. There are approximately 2.5 million brain injuries annually, 90% of which may be classified as mild since these individuals do not display clear morphological abnormalities following injury on imaging. The majority of individuals develop neurocognitive deficits such as learning and memory impairment and recovery occurs over 3 to 6 months after mild TBI (mTBI). The hippocampus is highly susceptible to injury from mTBI due to the anatomic localization and has been implicated in the neurocognitive impairments after mTBI. Here, we investigated whether the mTBI-induced morphological and pathophysiological alterations of GABAergic interneurons in the CA1 subfield of the hippocampus recovers after 30 days in the controlled cortical impact (CCI) model of TBI. Design-based stereology shows a significant reduction in the number of GABAergic interneurons 7 days after CCI. However, the number of GABAergic interneurons is not significantly reduced at 30 days after CCI. The total number of neurons is not altered over the course of 30 days. GABAergic inhibitory currents in the CA1 subfield also show that, although there is a significant reduction in the CCI group at 7 days, the currents are not significantly different from sham controls at 30 days. We suggest that the recovery of GABAergic function in the CA1 subfield of the hippocampus observed 30 days after CCI is one of the mechanisms associated with the recovery of memory after mTBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-019-01753-z | DOI Listing |
Mol Psychiatry
September 2025
Department of Neurology, Zhongshan Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
Atrophy of the subiculum is the earliest hippocampal anatomical marker of Alzheimer's disease (AD) and is closely associated with early cognitive decline. However, the underlying mechanisms driving this vulnerability remain unclear. In this study, using the 5×FAD mouse model, we identified significant amyloid-beta (Aβ) accumulation in the subiculum during the early stages of AD.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Neuroscience and Physiology.
Cannabidiol (CBD) decreases seizures in patients with severe pediatric-onset epilepsies including Dravet, Lennox-Gastaut, and Tuberous Sclerosis syndromes. However, the effects of CBD on neuronal activity and circuits remain obscure. In the mouse hippocampus, we found that CBD causes a GPR55-independent decrease in CA1 pyramidal neuron firing frequency and a GPR55-dependent reduction in CA3 to CA1 hippocampal activity propagation.
View Article and Find Full Text PDFNeuroscience
September 2025
Institute of Physiology of the Czech Academy of Sciences, Videnska 1830, 14200 Prague 4, Czech Republic.
Impairments in decision-making and behavioral flexibility in patients with schizophrenia (SCZ) are currently among the most investigated aspects of SCZ. Increased GLUergic excitatory activity and decreased GABAergic inhibitory activity induce mPFC-vHPC γ/θ band desynchronization in many tasks where behavioral flexibility is tested. However, these tasks used "perceptual" decision-making/flexibility but not navigational decision-making/flexibility.
View Article and Find Full Text PDFScience
September 2025
Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
Identifying the computational roles of different neuron families is crucial for understanding neural networks. Most neural diversity is embodied in various types of γ-aminobutyric acid-mediated (GABAergic) interneurons, grouped into four major families. We collected datasets of opto-tagged neurons from all four families, along with excitatory neurons, from both the neocortex and hippocampus.
View Article and Find Full Text PDFNeuroscience
September 2025
Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brasil; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK. Electronic address:
Zika virus (ZIKV) infection during gestation causes fetal brain abnormalities such as microcephaly, cortical malformations, and motor defects. Infected infants often develop epilepsy and other neurodevelopmental impairments later in life. Animal models show that ZIKV infection leads to seizures and neuroinflammation, disrupting brain development and function.
View Article and Find Full Text PDF