98%
921
2 minutes
20
Quantum teleportation allows a "disembodied" transmission of unknown quantum states between distant quantum systems. Yet, all teleportation experiments to date were limited to a two-dimensional subspace of quantized multiple levels of the quantum systems. Here, we propose a scheme for teleportation of arbitrarily high-dimensional photonic quantum states and demonstrate an example of teleporting a qutrit. Measurements over a complete set of 12 qutrit states in mutually unbiased bases yield a teleportation fidelity of 0.75(1), which is well above both the optimal single-copy qutrit state-estimation limit of 1/2 and maximal qubit-qutrit overlap of 2/3, thus confirming a genuine and nonclassical three-dimensional teleportation. Our work will enable advanced quantum technologies in high dimensions, since teleportation plays a central role in quantum repeaters and quantum networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.070505 | DOI Listing |
Luminescence
September 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing, China.
A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.
View Article and Find Full Text PDFACS Nano
September 2025
Insitut für Physik and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany.
Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
Achucarro Basque Center for Neuroscience, Leioa, Spain.
Adenosine A receptors (AARs) have shown promising therapeutic properties despite their controversial role in modulating stroke outcome. However, the temporal evolution of cerebral AARs density after cerebral ischemia and its subsequent neuroinflammatory response have been scarcely explored. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated in rats by positron emission tomography (PET) with [C]SCH442416 and immunohistochemistry (IHC).
View Article and Find Full Text PDFChemistry
September 2025
Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
The coordination chemistry of the planar, doubly π-extended bipyridine analog, 6,6',7,7'-biphenanthridine (p-biphe), is presented. The phenanthridine units in p-biphe are fused together at the 6- and 7- positions, and the resulting rigid ligand is compared with the more flexible parent "biphe" fused only at the 6-positions. p-Biphe is intensely fluorescent in solution with a much higher quantum yield, but, unlike biphe, at 77 K the fluorescence is not accompanied by any significant phosphorescence.
View Article and Find Full Text PDFNanoscale Horiz
September 2025
Theoretical Chemical Physics Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, Mons B-7000, Belgium.
Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway.
View Article and Find Full Text PDF