A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CT Texture Analysis and Machine Learning Improve Post-ablation Prognostication in Patients with Adrenal Metastases: A Proof of Concept. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: To assess the performance of pre-ablation computed tomography texture features of adrenal metastases to predict post-treatment local progression and survival in patients who underwent ablation using machine learning as a prediction tool.

Materials And Methods: This is a pilot retrospective study of patients with adrenal metastases undergoing ablation. Clinical variables were collected. Thirty-two texture features were extracted from manually segmented adrenal tumors. A univariate cox proportional hazard model was used for prediction of local progression and survival. A linear support vector machine (SVM) learning technique was applied to the texture features and clinical variables, with leave-one-out cross-validation. Receiver operating characteristic analysis and the area under the curve (AUC) were used to assess performance between using clinical variables only versus clinical variables and texture features.

Results: Twenty-one patients (61% male, age 64.1 ± 10.3 years) were included. Mean time to local progression was 29.8 months. Five texture features exhibited association with progression (p < 0.05). The SVM model based on clinical variables alone resulted in an AUC of 0.52, whereas the SVM model that included texture features resulted in an AUC 0.93 (p = 0.01). Mean overall survival was 35 months. Fourteen texture features were associated with survival in the univariate model (p < 0.05). While the trained SVM model based on clinical variables resulted in an AUC of 0.68, the SVM model that included texture features resulted in an AUC of 0.93 (p = 0.024).

Discussion: Pre-ablation texture analysis and machine learning improve local tumor progression and survival prediction in patients with adrenal metastases who undergo ablation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00270-019-02336-0DOI Listing

Publication Analysis

Top Keywords

texture features
16
clinical variables
16
adrenal metastases
12
local progression
12
machine learning
8
patients adrenal
8
assess performance
8
progression survival
8
texture
6
texture analysis
4

Similar Publications