98%
921
2 minutes
20
Objectives: A commercial barcode-assisted medication administration (BCMA) system was integrated to secure the medication process and particularly the dispensing stage by technicians and the administration stage with nurses. We aimed to assess the impact of this system on medication dispensing errors and barriers encountered during integration process.
Methods: We conducted a controlled randomized study in a teaching hospital, during dispensing process at the pharmacy department. Four wards were randomized in the experimental group and control group, with two wards using the system during 3 days with dedicated pharmacy technicians. The system was a closed loop system without information return to the computerized physician order entry system. The two dedicated technicians had a 1-week training session. Observations were performed by one observer among the four potential observers previously trained. The main outcomes assessed were dispensing error rates and the identification of barriers encountered to expose lessons learned from this study.
Results: There was no difference between the dispensing error rate of the control and experimental groups (7.9% for both, = 0.927). We identified 10 barriers to pharmacy barcode-assisted system technology deployment. They concerned technical (problems with semantic interoperability interfaces, bad user interface, false errors generated, lack of barcodes), structural (poor integration with local information technology), work force (short staff training period, insufficient workforce), and strategic issues (system performance problems, insufficient budget).
Conclusion: This study highlights the difficulties encountered in integrating a commercial system in current hospital information systems. Several issues need to be taken into consideration before the integration of a commercial barcode-assisted system in a teaching hospital. In our experience, interoperability of this system with the electronic health record is the key for the success of this process with an entire closed loop system from prescription to administration. BCMA system at the dispensing process remains essential to purchase securing medication administration process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6703993 | PMC |
http://dx.doi.org/10.1055/s-0039-1694749 | DOI Listing |
Appl Radiat Isot
September 2025
Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
Accurate determination of the parameters of each high purity germanium, HPGe detectors ensure the precision of quantitative results obtained from spectrum analysis. This study presents a comprehensive performance evaluation and long-term quality control assessment of a high-purity germanium (HPGe) gamma spectrometry system that has been operational for over 15 years. Key spectrometric measures were recorded, including energy resolution, peak shape ratios, asymmetry, peak-to-Compton ratio, relative efficiency, electronic noise, minimum detectable activity (MDA), and repeatability and reproducibility of the system.
View Article and Find Full Text PDFJ Org Chem
September 2025
Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznań, Poland; https://www.kucinskilab.com.
The development of efficient and broadly applicable silylation methodologies remains a central goal in synthetic organic and organosilicon chemistry. Traditionally, silylation reactions employ chlorosilanes or hydrosilanes, often necessitating the use of moisture-sensitive and corrosive reagents. Herein, we report a high-yielding, operationally simple, rapid, and economical silylation platform based on trifluoromethyltrimethylsilane (TMSCF) and catalytic potassium hydroxide (KOH).
View Article and Find Full Text PDFMol Pharm
September 2025
Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, P. R. China.
Myocardial injury constitutes a life-threatening complication of sepsis, driven by synergistic oxidative-inflammatory pathology involving dysregulated production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and proinflammatory cytokines. This pathophysiological cascade remarkably elevates morbidity and mortality rates in septic patients, emerging as a key contributor to poor clinical outcomes. Despite its clinical significance, no clinically validated therapeutics currently exist for managing septic cardiomyopathy.
View Article and Find Full Text PDFJMIR Med Inform
September 2025
Departments of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China, 86 18922109279, 86 20852523108.
Background: Despite the Coronary Artery Reporting and Data System (CAD-RADS) providing a standardized approach, radiologists continue to favor free-text reports. This preference creates significant challenges for data extraction and analysis in longitudinal studies, potentially limiting large-scale research and quality assessment initiatives.
Objective: To evaluate the ability of the generative pre-trained transformer (GPT)-4o model to convert real-world coronary computed tomography angiography (CCTA) free-text reports into structured data and automatically identify CAD-RADS categories and P categories.