Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We developed a mathematical model of colon physiology driven by serotonin signaling in the enteric nervous system. No such models are currently available to assist drug discovery and development for GI motility disorders. Model parameterization was informed by published preclinical and clinical data. Our simulations provide clinically relevant readouts of bowel movement frequency and stool consistency. The model recapitulates healthy and slow transit constipation phenotypes, and the effect of a 5-HT receptor agonist in healthy volunteers. Using the calibrated model, we predicted the agonist dose to normalize defecation frequency in slow transit constipation while avoiding the onset of diarrhea. Model sensitivity analysis predicted that changes in HAPC frequency and liquid secretion have the greatest impact on colonic motility. However, exclusively increasing the liquid secretion can lead to diarrhea. In contrast, increasing HAPC frequency alone can enhance bowel frequency without leading to diarrhea. The quantitative systems pharmacology approach used here demonstrates how mechanistic modeling of disease pathophysiology expands our understanding of biology and supports judicious hypothesis generation for therapeutic intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10928-019-09651-6DOI Listing

Publication Analysis

Top Keywords

quantitative systems
8
systems pharmacology
8
colonic motility
8
slow transit
8
transit constipation
8
hapc frequency
8
liquid secretion
8
model
6
frequency
5
pharmacology model
4

Similar Publications

An aptasensor-based fluorescent signal amplification strategy for highly sensitive detection of mycotoxins.

Anal Methods

September 2025

Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins that pose great health threats to humans. Herein, an aptasensor-based fluorescent signal amplification strategy is developed for the detection of AFB1. Initially, the AFB1 aptamers labelled with carboxyfluorescein (FAM) are adsorbed onto graphene oxide (GO), triggering energy transfer.

View Article and Find Full Text PDF

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Parasagittal dural space and arachnoid granulations morphology in pre-clinical and early clinical multiple sclerosis.

Mult Scler

September 2025

Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, VA Medical Center, TN Valley Healthcare System, Nashville, TN, USA.

Background: There is limited knowledge on the post-glymphatic structures such as the parasagittal dural (PSD) space and the arachnoid granulations (AGs) in multiple sclerosis (MS).

Objectives: To evaluate differences in volume and macromolecular content of PSD and AG between people with newly diagnosed MS (pwMS), clinically isolated syndrome (pwCIS), or radiologically isolated syndrome (pwRIS) and healthy controls (HCs) and their associations with clinical and radiological disease measures.

Methods: A total of 69 pwMS, pwCIS, pwRIS, and HCs underwent a 3.

View Article and Find Full Text PDF

The morphological patterns of lung adenocarcinoma (LUAD) are recognized for their prognostic significance, with ongoing debate regarding the optimal grading strategy. This study aimed to develop a clinical-grade, fully quantitative, and automated tool for pattern classification/quantification (PATQUANT), to evaluate existing grading strategies, and determine the optimal grading system. PATQUANT was trained on a high-quality dataset, manually annotated by expert pathologists.

View Article and Find Full Text PDF

Background: While the invasive index of microcirculation resistance (IMR) remains the gold standard for diagnosing coronary microvascular dysfunction (CMD), its clinical adoption is limited by procedural complexity and cost. Angiography-based IMR (Angio-IMR), a computational angiography-based method, offers a promising alternative. This study evaluates the diagnostic efficacy of Angio-IMR for CMD detection in angina pectoris (AP).

View Article and Find Full Text PDF