98%
921
2 minutes
20
Muscle regeneration is a closely regulated process that involves a variety of cell types such as satellite cells, myofibers, fibroadipogenic progenitors, endothelial cells, and inflammatory cells. Among these different cell types, macrophages emerged as a central actor coordinating the different cellular interactions and biological processes. Particularly, the transition of macrophages from their proinflammatory to their anti-inflammatory phenotype was shown to regulate inflammation, myogenesis, fibrosis, vascularization, and return to homeostasis. On the other hand, deregulation of macrophage accumulation or polarization in chronic degenerative muscle disorders was shown to impair muscle regeneration. Considering the key roles of macrophages in skeletal muscle, they represent an attractive target for new therapeutic approaches aiming at mitigating various muscle disorders. This review aims at summarizing the novel insights into macrophage heterogeneity, plasticity, and functions in skeletal muscle homeostasis, regeneration, and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664695 | PMC |
http://dx.doi.org/10.1155/2019/4761427 | DOI Listing |
Biol Cybern
September 2025
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 61801, IL, USA.
In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).
View Article and Find Full Text PDFAbdom Radiol (NY)
September 2025
Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.
View Article and Find Full Text PDFKhirurgiia (Mosk)
September 2025
Pavlov Ryazan State Medical University, Ryazan, Russia.
Objective: To determine the distribution of patients with different anterior abdominal wall deformities.
Material And Methods: Physical data, CT and morphological findings were analyzed in 622 patients. The study was conducted in retro- and prospective nature.
JMIR Form Res
September 2025
Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatrics Institute, No. 106, Zhongshaner Rd, Guangzhou, 510080, China, 86 15920151904.
Background: Point-of-care ultrasonography has become a valuable tool for assessing diaphragmatic function in critically ill patients receiving invasive mechanical ventilation. However, conventional diaphragm ultrasound assessment remains highly operator-dependent and subjective. Previous research introduced automatic measurement of diaphragmatic excursion and velocity using 2D speckle-tracking technology.
View Article and Find Full Text PDFBackground: Diabetes mellitus is still a major health problem affecting individuals all over the world. Type 1 diabetes mellitus occurs due to insulin deficiency resulting from the destruction of pancreatic β-cells. This study aimed to investigate how vitamin D reduces blood glucose levels and HbA1c.
View Article and Find Full Text PDF