98%
921
2 minutes
20
Islet cell transplantation has been limited most by poor graft survival. Optimizing the site of transplantation could improve clinical outcomes by minimizing required donor cells, increasing graft integration, and simplifying the transplantation and monitoring process. In this article, we review the history and significant human and animal data for clinically relevant sites, including the liver, spleen, and kidney subcapsule, and identify promising new sites for further research. While the liver was the first studied site and has been used the most in clinical practice, the majority of transplanted islets become necrotic. We review the potential causes for graft death, including the instant blood-mediated inflammatory reaction, exposure to immunosuppressive agents, and low oxygen tension. Significant research exists on alternative sites for islet cell transplantation, suggesting a promising future for patients undergoing pancreatectomy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196852 | PMC |
http://dx.doi.org/10.1177/1932296819868495 | DOI Listing |
Eur J Pharmacol
September 2025
Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China. Electronic address:
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder in which autoantibodies cause the immune system to attack and destroy pancreatic β-cells, leading to insufficient insulin production and impaired blood glucose control. T follicular helper (Tfh) cells are recognized as a group of CD4 T cells that help B cells to produce high-affinity antibodies. Our previous research found that oxymatrine (OMT) exhibits excellent immunomodulatory properties on Tfh cells in autoimmune diseases.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here, we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-positive (AAB), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine subtypes.
View Article and Find Full Text PDFOnco Targets Ther
September 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
Background: Insulinoma, the most common type of pancreatic endocrine tumor, frequently induces hypoglycemia due to persistent hyperinsulinemia. Although Mi-Lnc70 expression progressively increases during pancreatic maturation in mice, the biological role of Mi-Lnc70 in pancreatic β cells remains elusive.
Aim: This study was designed to investigate the role of LncRNA-Mi-Lnc70 in the mouse pancreatic β-cell line MIN6.
Front Pharmacol
August 2025
Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center of Shenyang Medical College, Shenyang, China.
MR409, a synthetic growth hormone-releasing hormone (GHRH) analogue, has demonstrated therapeutic potential in enhancing islet cell transplantation efficacy in diabetes mice and exerts beneficial effects on cardiovascular diseases. The present study investigated the renoprotective effects of MR409 on db/db and streptozotocin (STZ)-induced diabetic mice, focusing on its role in modulating oxidative stress and ferroptosis. db/db or STZ mice combined with high fat diet were used to establish the type 2 diabetic models.
View Article and Find Full Text PDFDiabetologia
September 2025
Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.
View Article and Find Full Text PDF