98%
921
2 minutes
20
Background: The sperm DNA methylation landscape is unique and critical for offspring health. If gamete-derived DNA methylation escapes reprograming in early embryos, epigenetic defects in sperm may be transmitted to the next generation. Current techniques to assess sperm DNA methylation show bias toward CpG-dense regions and do not target areas of dynamic methylation, those predicted to be environmentally sensitive and tunable regulatory elements.
Objectives: Our goal was to assess variation in human sperm DNA methylation and design a targeted capture panel to interrogate the human sperm methylome.
Methods: To characterize variation in sperm DNA methylation, we performed whole genome bisulfite sequencing (WGBS) on an equimolar pool of sperm DNA from a wide cross section of 30 men varying in age, fertility status, methylenetetrahydrofolate reductase () genotype, and exposures. With our targeted capture panel, in individual samples, we examined the effect of genotype ([Formula: see text] , [Formula: see text] ), as well as high-dose folic acid supplementation ([Formula: see text], per genotype, before and after supplementation).
Results: Through WGBS we discovered nearly 1 million CpGs possessing intermediate methylation levels (20-80%), termed dynamic sperm CpGs. These dynamic CpGs, along with 2 million commonly assessed CpGs, were used to customize a capture panel for targeted interrogation of the human sperm methylome and test its ability to detect effects of altered folate metabolism. As compared with men, those with the genotype (50% decreased activity) had both hyper- and hypomethylation in their sperm. High-dose folic acid supplement treatment exacerbated hypomethylation in men compared with . In both cases, [Formula: see text] of altered methylation was found in dynamic sperm CpGs, uniquely measured by our assay.
Discussion: Our sperm panel allowed the discovery of differential methylation following conditions affecting folate metabolism in novel dynamic sperm CpGs. Improved ability to examine variation in sperm DNA methylation can facilitate comprehensive studies of environment-epigenome interactions. https://doi.org/10.1289/EHP4812.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792365 | PMC |
http://dx.doi.org/10.1289/EHP4812 | DOI Listing |
Curr Opin Urol
September 2025
Department of Urology.
Purpose Of Review: Infertility affects approximately 15% of couples, with male factors implicated in more than 50% of cases. Concerns over declining semen quality - evidenced by a more than 50% drop in sperm concentration over four decades - have triggered investigation into modifiable lifestyle and environmental factors. This review summarizes recent evidence on exposures that negatively impact male fertility.
View Article and Find Full Text PDFJ Mol Biol
September 2025
University of South Alabama, Department of Physiology and Cell Biology, 5851 USA Dr. North, Mobile, AL 36688, USA. Electronic address:
In sexually reproducing eukaryotes-particularly mammals-mitochondrial DNA (mtDNA) is typically inherited from a single parent, making uniparental mtDNA inheritance a fundamental feature of eukaryotic biology. Recently, it has been suggested that spermatozoa contain no mtDNA because the matrix targeting sequence (MTS) of the mitochondrial transcription factor A (TFAM) becomes phosphorylated, which prevents the mitochondrial import of this protein essential for mtDNA replication. In this study, we used a combination of the GeneSwap technique and phosphomimetic mutations to investigate the impact of TFAM MTS phosphorylation on mtDNA maintenance in cultured cells.
View Article and Find Full Text PDFMol Nutr Food Res
September 2025
Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
Early-life programming is a major determinant of lifelong metabolic health, yet current preventive strategies focus almost exclusively on maternal factors. Emerging experimental and preclinical data reveal that a father's diet before conception, particularly high-fat intake, also shapes offspring physiology. Here, we synthesize the latest evidence on how such diets remodel the sperm epigenome during two discrete windows of vulnerability: (i) testicular spermatogenesis, via DNA methylation and histone modifications, and (ii) post-testicular epididymal maturation, where small non-coding RNAs are selectively gained.
View Article and Find Full Text PDFZhonghua Nan Ke Xue
July 2025
Reproduction Medicine Center, General Hospital of Northern Theater Command, Shenyang, Liaoning 110003, China.
Objective: To investigate the relationship among seminal oxidation-reduction potential (nORP), sperm DNA fragmentation (DFI) and semen parameters in patients with varicocele.
Methods: Clinical data of 522 patients treated in the reproductive andrology clinic of the Northern Theater General Hospital from November 2023 to December 2023 were retrospectively analyzed, including 435 men of childbearing age and 87 men of infertile age. The patients were divided into the varicocele group (n=116) and non-varicocele group (n=406) according to clinical diagnosis.
Front Vet Sci
August 2025
Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
Nano-sized extracellular vesicles (EVs) possess a lipid bilayer and are secreted from cells into their surrounding environment. The transport of multiple biomolecules, including DNA together with RNA, microRNAs (miRNAs), lipids, proteins, and metabolites, happens through biofluids via EVs for intercellular communication. Extracellular vesicles play crucial roles during the embryo production (IVEP) process.
View Article and Find Full Text PDF