98%
921
2 minutes
20
Improving the stability of lithium-rich cathode materials is important in refining the overall performance of lithium-ion batteries. Here, we have proposed doping of different metal atoms such as K, Ca, Cd, and Al in different sites of LiNiMnO, and we have investigated their structural and electronic properties using first-principles calculations. We found that the Ni ions in the pristine LiNiMnO structure maintained the +3 oxidation state for a longer time and resulted in the structural deformation during the long cycling process. Whereas, the Ni ions in the Cd-, K-, and Ca-doped LiNiMnO structure are in the +3 oxidation state for a very short time, compared to the pristine system. Our density functional theory (DFT) results show that the doping of the Cd ion in the Ni site of LiNiMnO is the most suitable one, because it inhibits structural change, decreases the formation energy, and suppresses the Jahn-Teller distortion, compared with the pristine system and other dopant atoms. This theoretical study gives new insight about doping strategy and will help in improving the electrochemical performance of Li-rich cathode materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b01516 | DOI Listing |
Langmuir
September 2025
Product & Process Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands.
Noble metal nanoparticles (NPs), particularly platinum (Pt), are widely used in heterogeneous catalysis due to their exceptional activity. However, controlling their size and preventing sintering during synthesis remains a major challenge, especially when aiming for high dispersion and stability on supports such as graphene. Atomic layer deposition (ALD) has emerged as a promising method to address these issues, yet conventional processes often lead to broad particle size distributions (PSDs).
View Article and Find Full Text PDFBiol Trace Elem Res
September 2025
Department of Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
The aim of the study was to evaluate the toxic metals (TMs) pollution, bioaccumulation and its potential health risk via consumption of different vegetables irrigated by different water sources released from industrial estates of Khyber Pakhtunkhwa. Water (fresh and waste), soil and vegetables samples were collected in triplicates and acid digested. Digestion of samples were followed by evaporation and filtration and then assessed for TMs via atomic absorption spectrophotometer.
View Article and Find Full Text PDFChem Asian J
September 2025
Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India.
Fluorescent N-heterocyclic carbene (NHC) metal complexes are useful for various chemical and biological applications. In this study, we developed a simple strategy to synthesize BODIPY-linked NHC metal complexes involving Ag, Cu, Ni, and Pd. The synthesis began with the preparation of BODIPY-imidazolium salt as a precursor ligand.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, China.
This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal-organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM(HXBHYB)@MOF and their ORR/OER overpotentials.
View Article and Find Full Text PDFChem Rec
September 2025
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China.
Water electrolysis for hydrogen production has become an industrial focus in the era of green chemistry due to its high purity of hydrogen production and environmentally friendly, efficient process. As the half reaction of water splitting at the anode, the oxygen evolution reaction (OER) features a complex and sluggish process that restricts the efficiency of water splitting. The mechanism of OER varies with different electrolytes.
View Article and Find Full Text PDF