98%
921
2 minutes
20
Pathologically altered tau protein is a common denominator of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Therefore, promising immunotherapeutic approaches target and eliminate extracellular pathogenic tau species, which are thought to be responsible for seeding and propagation of tau pathology. Tau isoforms in misfolded states can propagate disease pathology in a template-dependent manner, proposed to be mediated by the release and internalization of extracellular tau. Monoclonal antibody DC8E8, binding four highly homologous and independent epitopes in microtubule-binding domain (MTBD) of diseased tau, inhibits tau-tau interaction, discriminates between healthy and pathologically truncated tau and reduces tau pathology in animal model in vivo. Here, we show that DC8E8 antibody acts via extracellular mechanism and does not influence viability and physiological functions of neurons. Importantly, in vitro functional assays showed that DC8E8 recognises pathogenic tau proteins of different size and origin, and potently blocks their entry into neurons. Next, we examined the mechanisms by which mouse antibody DC8E8 and its humanized version AX004 effectively block the neuronal internalization of extracellular AD tau species. We determined a novel mode of action of a therapeutic candidate antibody, which potently inhibits neuronal internalization of AD tau species by masking of epitopes present in MTBD important for interaction with neuron surface Heparan Sulfate Proteoglycans (HSPGs). We show that interference of tau-heparane sulfate interaction with DC8E8 antibody via steric hindrance represents an efficient and important therapeutic approach halting tau propagation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685285 | PMC |
http://dx.doi.org/10.1186/s40478-019-0770-y | DOI Listing |
JAMA Netw Open
September 2025
School of Medicine and Public Health, University of Wisconsin-Madison, Madison.
Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.
Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.
Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.
Mol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFJ Neurol
September 2025
Multiple Sclerosis Center, Sheba Medical Center, Derech Sheba 2, Tel Hashomer, Israel.
Introduction: Psychological stress has been proposed as a trigger for disease activity in multiple sclerosis (MS), but findings have been inconsistent. While prior research has focused largely on chronic stressors, little is known about how people with MS (pwMS) cope with acute, large-scale stress events such as war.
Objective: Examine the effects of wartime stress following the October 7, 2023 attack on disease activity in pwMS, and to assess whether emotional factors are associated with relapse risk during this period.
J Nurs Educ
September 2025
Union, Kentucky and Phi Gamma Chapter-Sigma Theta Tau International Nursing Honor Society, Indianapolis, Indiana.
Gen Physiol Biophys
September 2025
Department of Neurology, Hubei Third People's Hospital of Jianghan University, Wuhan, China.
In this study, we investigated the therapeutic potential of calycosin (from Astragalus) in Alzheimer's disease (AD), focusing on ferroptosis modulation. APP/PS1 mice received 40 mg/kg calycosin for 3 months. Cognitive function was assessed via Morris water maze test.
View Article and Find Full Text PDF