Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The stator units of the flagellum supply power to the flagellar motor via ion transport across the cytoplasmic membrane and generate torque on the rotor for rotation. Flagellar motors across bacterial species have evolved adaptations that impact and enhance stator function to meet the demands of each species, including producing stator units using different fuel types or various stator units for different motility modalities. produces one of the most complex and powerful flagellar motors by positioning 17 stator units at a greater radial distance than in most other bacteria to increase power and torque for high velocity of motility. We report another evolutionary adaptation impacting flagellar stators by identifying FlgX as a chaperone for stator units to ensure sufficient power and torque for flagellar rotation and motility. We discovered that FlgX maintains MotA and MotB stator protein integrity likely through a direct interaction with MotA that prevents their degradation. Suppressor analysis suggested that the physiology of drives the requirement for FlgX to protect stator units from proteolysis by the FtsH protease complex. Δ was strongly attenuated for colonization of the natural avian host, but colonization capacity was greatly restored by a single mutation in MotA. These findings suggest that the likely sole function of FlgX is to preserve stator unit integrity for the motility required for host interactions. Our findings demonstrate another evolved adaptation in motile bacteria to ensure the equipment of the flagellar motor with sufficient power to generate torque for motility. The bacterial flagellum is a reversible rotating motor powered by ion transport through stator units, which also exert torque on the rotor component to turn the flagellum for motility. Species-specific adaptations to flagellar motors impact stator function to meet the demands of each species to sufficiently power flagellar rotation. We identified another evolutionary adaptation by discovering that FlgX of preserves the integrity of stator units by functioning as a chaperone to protect stator proteins from degradation by the FtsH protease complex due to the physiology of the bacterium. FlgX is required to maintain a level of stator units sufficient to power the naturally high-torque flagellar motor of for motility in intestinal mucosal layers to colonize hosts. Our work continues to identify an increasing number of adaptations to flagellar motors across bacterial species that provide the mechanics necessary for producing an effective rotating nanomachine for motility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686046PMC
http://dx.doi.org/10.1128/mBio.01732-19DOI Listing

Publication Analysis

Top Keywords

stator units
40
flagellar motors
16
stator
14
flagellar motor
12
sufficient power
12
units
10
flagellar
10
chaperone stator
8
bacterial flagellum
8
power flagellar
8

Similar Publications

Unlabelled: YcgR is a c-di-GMP effector that inhibits both chemotaxis and swimming speed in and . Genetic, biochemical and structural data suggest that YcgR interacts with the bidirectional flagellar rotor as well as the stator to alter rotor bias to CCW and reduce motor speed, but how both feats are achieved remain unclear. Recent cryo-EM structures showing changes in disposition of the rotor and stator units during directional changes suggested to us a mechanism by which YcgR might bring about its action.

View Article and Find Full Text PDF

The cooperative binding of molecular agents onto a substrate is pervasive in living systems. To study whether a system shows cooperativity, one can rely on a fluctuation analysis of quantities such as the number of substrate-bound units and the residence time in an occupancy state. Since the relative standard deviation from the statistical mean monotonically decreases with the number of binding sites, these techniques are only suitable for small enough systems, such as those implicated in stochastic processes inside cells.

View Article and Find Full Text PDF

Unlabelled: Many bacteria utilize the type 9 secretion system (T9SS) for gliding motility, surface colonization, and pathogenesis. This dual-function motor supports both gliding motility and protein secretion, where rotation of the T9SS plays a central role. Fueled by the energy of the stored proton motive force and transmitted through the torque of membrane-anchored stator units, the rotary T9SS propels an adhesin-coated conveyor belt along the bacterial outer membrane like a molecular snowmobile, thereby enabling gliding motion.

View Article and Find Full Text PDF

Structural architecture of TolQ-TolR inner membrane protein complex from opportunistic pathogen .

Sci Adv

April 2025

Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.

Gram-negative bacteria harness the proton motive force (PMF) within their inner membrane (IM) to uphold cell envelope integrity, an indispensable aspect for both division and survival. The IM TolQ-TolR complex is the essential part of the Tol-Pal system, serving as a conduit for PMF energy transfer to the outer membrane. Here we present cryo-electron microscopy reconstructions of TolQ in apo and TolR-bound forms at atomic resolution.

View Article and Find Full Text PDF

Scrutinizing Stator Rotation in the Bacterial Flagellum: Reconciling Experiments and Switching Models.

Biomolecules

March 2025

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77480, USA.

The bacterial flagellar motor is one of the few known rotary motors, powering motility and chemotaxis. The mechanisms underlying its rotation and the switching of its rotational direction are fundamental problems in biology that are of significant interest. Recent high-resolution studies of the flagellar motor have transformed our understanding of the motor, revealing a novel gear mechanism where a membranous pentamer of MotA proteins rotates around a cell wall-anchored dimer of MotB proteins to turn the contacting flagellar rotor.

View Article and Find Full Text PDF