98%
921
2 minutes
20
Fluorogenic labeling enables imaging cellular molecules of interest with minimal background. This process is accompanied with the notable increase of the quantum yield of fluorophore, thus minimizing the background signals from unactivated profluorophores. Herein, the development of a highly efficient and bioorthogonal nitroso-based Diels-Alder fluorogenic reaction is presented and its usefulness is validated as effective and controllable in fluorescent probes and live-cell labeling strategies for dynamic cellular imaging. It is demonstrated that nitroso-based cycloaddition is an efficient fluorogenic labeling tool through experiments of further UV-activatable fluorescent labeling on proteins and live cells. The ability of tuning the fluorescence of labeled proteins by UV-irradiation enables selective activation of proteins of interest in a particular cell compartment at a given time point, while leaving the remaining labeled molecules untouched.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662066 | PMC |
http://dx.doi.org/10.1002/advs.201802039 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712.
Many soft, tough materials have emerged in recent years, paving the way for advances in wearable electronics, soft robotics, and flexible displays. However, understanding the interfacial fracture behavior of these materials remains a significant challenge, owing to the difficulty of quantifying the respective contributions from viscoelasticity and damage to energy dissipation ahead of cracks. This work aims to address this challenge by labeling a series of polymer networks with fluorogenic mechanophores, subjecting them to T-peel tests at various rates and temperatures, and quantifying their force-induced damage using a confocal microscope.
View Article and Find Full Text PDFACS Chem Biol
September 2025
Institute for Biomedicine and Glycomics, Griffith University, Queensland, 4111 Brisbane, Australia.
Small-molecule metabolic chemical probes are tailored chemical biology tools that are designed to detect and visualize biological processes within a cell or an organism. Nucleoside analogues are a subset of metabolic probes that enable the study of DNA synthesis, proliferation kinetics, and cell cycle progression. However, most available nucleoside analogue probes have been designed for use in mammalian cells, limiting their use in other species, where there are metabolic pathway differences.
View Article and Find Full Text PDFThe spatial organization and dynamics of a genome are central to gene regulation. While a comprehensive understanding of chromatin organization in the human nucleus has been achieved using fixed-cell methods, measuring the dynamics of specific genomic regions over extended periods in individual living cells remains challenging. Here, we present a robust and fully genetically encoded system for fluorescent labeling and long-term tracking of any accessible non-repetitive genomic locus in live human cells using fluorogenic and replenishable nanobody array fusions of the dCas9, and compact polycistronic single guide (sg)RNAs.
View Article and Find Full Text PDFSequence-generalized fluorescent labels and stains for RNA can enable imaging, tracking and analysis of the biopolymer. However, current non-covalent RNA dyes are poorly selective for RNA over DNA, interact weakly with their target, and can show limited utility in cellular RNA staining due to poor selectivity and high background signals. Here we report a fluorogenic covalent labeling approach based on acylimidazole-mediated reaction of donor-acceptor fluorophores with 2'-hydroxyl (2'-OH) groups of RNA, providing a wavelength-tunable, sequence-independent strategy for selective labeling of the biopolymer.
View Article and Find Full Text PDFNat Commun
August 2025
School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
Advancement in fluorescence imaging techniques enables the study of protein dynamics and localization with unprecedented spatiotemporal resolution. However, current imaging tools are unable to elucidate dynamic protein interactomes underlying imaging observations. Conversely, proteomics tools such as proximity labeling enable the analysis of protein interactomes at a single time point but lack information about protein dynamics.
View Article and Find Full Text PDF