Improving future low-noise aircraft technologies using experimental perception-based evaluation of synthetic flyovers.

Sci Total Environ

Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.

Published: November 2019


Article Synopsis

  • Residents near airports face noise pollution from aircraft, which can be mitigated by adopting new aircraft technologies and flight procedures.
  • Traditional noise measurement methods don't account for how people perceive sound or its health effects, prompting the need for a perception-influenced design approach.
  • The study utilized advanced auralization techniques to simulate various aircraft types and flight paths, revealing that innovative designs and customized procedures significantly reduce noise annoyance for residents.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Residents living in the vicinity of airports are exposed to noise from departing and approaching aircraft. Noise may be reduced by introducing novel aircraft technologies into vehicle retrofit, aircraft design and flight procedures. Nowadays, noise assessment and communication of noise are accomplished using conventional noise indicators that consider neither the perception of sound, nor its health effects. To overcome these limitations, this article presents a more comprehensive approach that supports the movement for perception-influenced design in order to reduce the negative environmental impacts and adverse health effects caused by increased air traffic noise. By means of auralization (the acoustical counterpart of visualization), possible future changes can be evaluated by considering the human perception of sound. In this study, in a virtual acoustic environment flyovers of different aircraft types and flight procedures are auralized for ground-based receiver locations, and subsequently evaluated in a psychoacoustic laboratory experiment with respect to short-term noise annoyance. Flight approaches of an existing reference aircraft, a possible low-noise retrofitted vehicle and a future low-noise vehicle design were simulated along standard and tailored flight procedures. To create realistic listening experiences of synthetic flyovers, auralization technologies were further developed regarding source synthesis, transitions between aircraft conditions, sound propagation effects and immersive sound reproduction. Listening experiments revealed significant annoyance reductions for low-noise aircraft types and tailored flight procedures, and that maximum benefit is achieved by the combined optimization of aircraft design and flight procedure. Further, it is shown that spatially distributed receivers need to be considered for a reliable low-noise aircraft technology evaluation. The reduction potential in terms of perceived noise by retrofitting current vehicles and designing new vehicle architectures is thus demonstrated. These findings suggest applying the proposed comprehensive approach to effectively reduce the impact of perceived air traffic noise in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.07.253DOI Listing

Publication Analysis

Top Keywords

flight procedures
16
low-noise aircraft
12
aircraft
10
noise
9
future low-noise
8
aircraft technologies
8
synthetic flyovers
8
aircraft design
8
design flight
8
perception sound
8

Similar Publications

A novel practical predefined-time sliding mode control strategy is proposed for the flight formation of a small tandem-rotor wheeled UAV (TRW-UAV) with unknown upper bound external disturbances and uncertainties in this paper. Firstly, a new predefined-time sliding mode surface is proposed to guide all errors of the position and velocity loops to converge to the origin in a predefined-time. Furthermore, a dynamic surface control approach is utilized to circumvent the higher-order differentiation when controlling the actuator loop.

View Article and Find Full Text PDF

Introduction: Pilots have an increased incidence of cutaneous melanoma compared to the general population; occupational exposure to ultraviolet (UV) radiation is one of several potential risk factors. Cockpit windshields effectively block UVB (280-315 nm) but further analysis is needed for UVA (315-400 nm). The objective of this observational study was to assess transmission of UVA through cockpit windshields and to measure doses of UVA at pilots' skin under daytime flying conditions.

View Article and Find Full Text PDF

Introduction: Military fast jet pilots face significant physical challenges, including high Gz accelerations during dynamic maneuvers. The objectives of this study were threefold: 1) to record pilot movements during real flights, 2) to quantify head and trunk movements under standardized Gz conditions and during basic fighter maneuvers (BFMs), and 3) to categorize compensatory strategies used to mitigate physical strain.

Methods: A total of 20 Eurofighter pilots (mean age: 28.

View Article and Find Full Text PDF

Introduction: This study investigated pilot cognitive engagement patterns across diverse flight conditions using electroencephalography (EEG)-based measurements in a high-fidelity rotary-wing simulation environment.

Methods: A total of 8 experienced U.S.

View Article and Find Full Text PDF

Introduction: A 264-d isolation simulation, SFINCSS-99, was conducted in Moscow to replicate typical scenarios on an orbital space station. One long-term group of four Russian crewmembers occupied the isolation complex for most of the duration (240 d), while two international groups of four each spent 110 d successively at the complex. Additionally, there were several short visits by medical personnel.

View Article and Find Full Text PDF