Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Down syndrome (DS), a complex genetic disorder caused by chromosome 21 trisomy, is associated with mitochondrial dysfunction leading to the accumulation of damaged mitochondria. Here we report that mitophagy, a form of selective autophagy activated to clear damaged mitochondria is deficient in primary human fibroblasts derived from individuals with DS leading to accumulation of damaged mitochondria with consequent increases in oxidative stress. We identified two molecular bases for this mitophagy deficiency: PINK1/PARKIN impairment and abnormal suppression of macroautophagy. First, strongly downregulated PARKIN and the mitophagic adaptor protein SQSTM1/p62 delays PINK1 activation to impair mitophagy induction after mitochondrial depolarization by CCCP or antimycin A plus oligomycin. Secondly, mTOR is strongly hyper-activated, which globally suppresses macroautophagy induction and the transcriptional expression of proteins critical for autophagosome formation such as ATG7, ATG3 and FOXO1. Notably, inhibition of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) using AZD8055 (AZD) restores autophagy flux, PARKIN/PINK initiation of mitophagy, and the clearance of damaged mitochondria by mitophagy. These results recommend mTORC1-mTORC2 inhibition as a promising candidate therapeutic strategy for Down Syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646359PMC
http://dx.doi.org/10.1038/s41419-019-1752-5DOI Listing

Publication Analysis

Top Keywords

damaged mitochondria
16
autophagosome formation
8
leading accumulation
8
accumulation damaged
8
mitophagy
6
mtor hyperactivation
4
hyperactivation syndrome
4
syndrome underlies
4
underlies deficits
4
deficits autophagy
4

Similar Publications

Defective mitochondrial quality control in the ageing of skeletal muscle.

Mech Ageing Dev

September 2025

Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy.

Age-related skeletal muscle decline is a major contributor to frailty, functional impairment, and loss of independence in advanced age. This process is characterized by selective atrophy of type II fibers, impaired excitation-contraction coupling, and reduced regenerative capacity. Emerging evidence implicates mitochondrial dysfunction as a central mechanism in the disruption of muscle homeostasis with age.

View Article and Find Full Text PDF

Imbalanced mitochondrial homeostasis in ocular diseases: unique pathogenesis and targeted therapy.

Exp Eye Res

September 2025

School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, 266121, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shan

Mitochondria play a crucial role in energy production and are intimately associated with ocular function. Mitochondrial dysfunction can trigger oxidative stress and inflammation, adversely affecting key ocular structures such as the lacrimal gland, lens, retina, and trabecular meshwork. This dysfunction may compromise the barrier properties of the trabecular meshwork, impeding aqueous humour outflow, elevating intraocular pressure, and resulting in optic nerve damage and primary open-angle glaucoma.

View Article and Find Full Text PDF

The tumor microenvironment (TME) imposes immunologic and metabolic stresses sufficient to deviate immune cell differentiation into dysfunctional states. Oxidative stress originating in the mitochondria can induce DNA damage, most notably telomeres. Here, we show that dysfunctional T cells in cancer did not harbor short telomeres indicative of replicative senescence but rather harbored damaged telomeres, which we hypothesized arose from oxidative stress.

View Article and Find Full Text PDF

Shenqi Wan inhibits cellular senescence to alleviate renal fibrosis by modulating the AQP1/TGF-β1/ITPR1 axis.

Phytomedicine

September 2025

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. Electronic address:

Background: Renal fibrosis is a common terminal pathway for various CKDs. Shenqi Wan (SQW) can reduce the development of renal fibrosis and may be associated with aquaporin 1 (AQP1) as discovered previously.

Purpose: The mechanism of SQW in mitigating the progression of renal fibrosis and alleviating CKD was analyzed.

View Article and Find Full Text PDF

The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.

View Article and Find Full Text PDF