Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Malaria is the most important vector-borne disease in the world. Epidemiological and ecological studies of malaria traditionally utilize detection of Plasmodium sporozoites in whole mosquitoes or salivary glands by microscopy or serological or molecular assays. However, these methods are labor-intensive, and can over- or underestimate mosquito transmission potential. To overcome these limitations, alternative sample types have been evaluated for the study of malaria. It was recently shown that Plasmodium could be detected in saliva expectorated on honey-soaked cards by Anopheles stephensi, providing a better estimate of transmission risk. We evaluated whether excretion of Plasmodium falciparum nucleic acid by An. stephensi correlates with expectoration of parasites in saliva, thus providing an additional sample type for estimating transmission potential. Mosquitoes were exposed to infectious blood meals containing cultured gametocytes, and excreta collected at different time points post-exposure. Saliva was collected on honey-soaked filter paper cards, and salivary glands were dissected and examined microscopically for sporozoites. Excreta and saliva samples were tested by real time polymerase chain reaction (RT-rtPCR).

Results: Plasmodium falciparum RNA was detected in mosquito excreta as early as four days after ingesting a bloodmeal containing gametocytes. Once sporogony (the development of sporozoites) occurred, P. falciparum RNA was detected concurrently in both excreta and saliva samples. In the majority of cases, no difference was observed between the C values obtained from matched excreta and saliva samples, suggesting that both samples provide equally sensitive results. A positive association was observed between the molecular detection of the parasites in both samples and the proportion of mosquitoes with sporozoites in their salivary glands from each container. No distinguishable parasites were observed when excreta samples were stained and microscopically analyzed.

Conclusions: Mosquito saliva and excreta are easily collected and are promising for surveillance of malaria-causing parasites, especially in low transmission settings or in places where arboviruses co-circulate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639908PMC
http://dx.doi.org/10.1186/s13071-019-3610-9DOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum
12
salivary glands
12
excreta saliva
12
saliva samples
12
detection plasmodium
8
saliva
8
excreta
8
saliva excreta
8
transmission potential
8
falciparum rna
8

Similar Publications

Antimalarial resistance is a primary challenge in the treatment of malaria. The ongoing search for novel drug sources remains a critical strategy for addressing this issue. This study evaluated the blood stage antiplasmodial and cytotoxic activities of the crude extract and fractions obtained from Lepidobotrys staudtii.

View Article and Find Full Text PDF

We hypothesized that variants in inflammasome-related genes could influence susceptibility to gestational malaria (GM). To test this, we conducted an association study in a cohort of pregnant women from a malaria-endemic region in northern Brazil, assessing whether specific functional single nucleotide variants (SNVs) in inflammasome genes affect (1) the response to Plasmodium infection and (2) the development of placental malaria. Our findings revealed that the NLRP1 p.

View Article and Find Full Text PDF

Objective: () (common juniper) is a plant that has been used for medicinal purposes for centuries. This study aims to evaluate the antiparasitic effects of ethanol, methanol, chloroform, and water extracts of fruits against , , , and

Methods: The antiparasitic activities of fruit extracts prepared at room temperature using the shaking maceration method were tested against using the ring stage survival test, and against , , and using the broth microdilution method.

Results: The chloroform extract of fruits was found to be effective on , , , and parasites at concentrations of 15, 10, 30 and 30 µg/mL, respectively.

View Article and Find Full Text PDF

Malaria treatments are compromised by drug resistance, creating an urgent need to discover new drugs. We used a phenotypic high-throughput screening (HTS) platform to identify new antimalarials, uncovering three related pyrrole-, indole-, and indoline-based series with a shared α-azacyclic acetamide core. These compounds showed fast-killing activity on asexual blood-stage parasites, were not cytotoxic, and disrupted parasite intracellular pH and Na regulation similarly to cipargamin (KAE609), a clinically advanced inhibitor of the Na pump (ATP4).

View Article and Find Full Text PDF

Structure-Activity Relationships of 3-Hydroxypropanamidines (HPAs) with Potent In Vivo Antimalarial Activity.

J Med Chem

September 2025

Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.

New treatment strategies are required to combat the spread of drug-resistant malaria. The synthesis and preclinical evaluation of novel 3-hydroxy-propanamidines (HPAs), with modifications of the phenanthrene and the 4-fluorobenzamidine moieties, has yielded several analogs exhibiting excellent in vitro growth inhibition of drug-sensitive or resistant fresh clinical isolates and culture-adapted strains. No cytotoxicity in the human HepG2 cell line was observed, demonstrating notable parasite selectivity.

View Article and Find Full Text PDF