Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We demonstrate a novel colloidal self-assembly approach toward obtaining mechanically tunable, cost-efficient, and low-loss plasmonic nanostructures that show pronounced optical anisotropy upon mechanical deformation. Soft lithography and template-assisted colloidal self-assembly are used to fabricate a stretchable periodic square lattice of gold nanoparticles on macroscopic areas. We stress the impact of particle size distribution on the resulting optical properties. To this end, lattices of narrowly distributed particles (∼2% standard deviation in diameter) are compared with those composed of polydisperse ones (∼14% standard deviation). The enhanced particle quality sharpens the collective surface lattice resonances by 40% to achieve a full width at half-maximum as low as 16 nm. This high optical quality approaches the theoretical limit for this system, as revealed by electromagnetic simulations. One hundred stretching cycles demonstrate a reversible transformation from a square to a rectangular lattice, accompanied by polarization-dependent optical properties. On the basis of these findings we envisage the potential applications as strain sensors and mechanically tunable filters.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b08871DOI Listing

Publication Analysis

Top Keywords

surface lattice
8
lattice resonances
8
soft lithography
8
colloidal self-assembly
8
mechanically tunable
8
optical properties
8
standard deviation
8
optical
5
mechanotunable surface
4
lattice
4

Similar Publications

Developing the efficient C─H bond activation carboxylation processes for furoic acid (FA) represents a critical technological challenge in achieving atom-economical synthesis of 2,5-furandicarboxylic acid (FDCA). Despite notable advancements in this field, the inherent contradiction between the high reactivity of furan rings and the chemical inertness of C─H bonds poses substantial technical bottleneck for achieving controllable C─H carboxylation under mild conditions. Herein, we report a high lattice-distorted MnOx catalyst with surface trench-like structures, wherein the Mn-O-conjugated configurations and electron-rich Mn cooperatively drive FA dehydrogenation and carbon radical reduction, inducing the free radical evolution process (FA→carbon-centered FA radical→FA carbanion), then coupled with solvent-polarized CO to accelerate the carboxylation process.

View Article and Find Full Text PDF

Electromagnetic pollution poses significant risks to electronic devices and human health, highlighting the need for mechanically robust, lightweight, and cost-effective electromagnetic interference (EMI) shielding materials. 3D-printed structures with nanomaterial-engineered surfaces offer a promising method for tailoring mechanical and electrical properties through multiscale design. Herein, we present a facile strategy for fabricating lightweight and flexible EMI shielding structures by chemical deposition of nanostructured metal coatings onto 3D-printed polymeric substrates.

View Article and Find Full Text PDF

Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.

View Article and Find Full Text PDF

Distinctive polymer brushes (PBs) play a crucial role in providing a nonpreferential (neutral) surface for vertical orientation of block copolymers (BCPs). This bottom-up approach effectively aligns the formation of vertical lamellar and cylinder lattice structures from the BCP, which is crucial for nanopatterning and other applications. In conventional BCP self-assembly techniques, random copolymer brushes are commonly employed to achieve substrate neutrality.

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF