98%
921
2 minutes
20
A link between the accumulation of sugar and potassium has previously been described for ripening grape berries. The functional basis of this link has, as of yet, not been elucidated but could potentially be associated with the integral role that potassium has in phloem transport. An experiment was conducted on Shiraz grapevines in a controlled environment. The accumulation of berry sugar was curtailed by reducing the leaf photoassimilation rate, and the availability of potassium was increased through soil fertilization. The study characterizes the relationship between the accumulation of sugar and potassium into the grape berry and describes how their accumulation patterns are related to the expression patterns of their transporter proteins. A strong connection was observed between the accumulation of sugar and potassium in the grape berry pericarp, irrespective of the treatment. The relative expression of proteins associated with sugar and potassium transport across the tonoplast and plasma membrane was closely correlated, suggesting transcriptional coregulation leading to the simultaneous translocation and storage of potassium and sugar in the grape berry cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcz130 | DOI Listing |
J Food Sci Technol
October 2025
Federal Technological University of Paraná, Cristo Rei Street, 19 Toledo, Toledo, Parana Brazil.
Traditional methods for fruit juice preservation use high temperatures, which degrade beneficial compounds like vitamins and antioxidants. Membrane filtration provides a gentler alternative, preserving nutrients through mild operating temperatures. This study assessed the temperature and pressure influence on watermelon juice microfiltration, focusing on permeated flow, lycopene, sugars, phenolic compounds, and flavonoids.
View Article and Find Full Text PDFSci Total Environ
September 2025
University of Novi Sad, Faculty of Technology Novi Sad, Department of Food Preservation Engineering, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
Soil may contain certain concentrations of the natural radionuclide K as well as the artificial radionuclide Cs, which can accumulate in the edible parts of plants. This can lead to an exceedance of the ingestion dose. In this study, measurements of K and Cs were conducted for 144 food samples (including fruit, tea, cereals, beans, salt, and sugar) using gamma spectrometry.
View Article and Find Full Text PDFFront Microbiol
August 2025
Institute of Biotechnology, Gansu Academy of Agricultural Sciences, Lanzhou, China.
Introduction: To meet the both escalating production requirements of pepino cultivation and maintaining soil sustainable development through precise exploration of chemical fertilizer input amounts.
Methods: A 5-month greenhouse experiment evaluated how varying nitrogen fertilization rates (0, 75, 150, 225, and 300 kg⋅ha) modulate soil biochemical properties and their subsequent effects on pepino productivity and fruit nutrients components.
Results: Our study revealed that the N300 treatment maximized vegetative growth (plant height, leaf and fruit dry biomass), as well as plant nitrogen and fruit calcium contents, but significantly reduced root-to-shoot ratio, vitamin C, and soluble sugars versus N0.
PLoS One
September 2025
Department of Microbial and Molecular Systems (M2S), CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Leuven, Belgium.
Seaweed extracts are promising plant biostimulants for viticulture, but their effects on white winegrape cultivars grown under cool climates remain fairly undocumented. Furthermore, information is limited on the biostimulant potential of some brown seaweed species like Ecklonia maxima. This study evaluated the impact of two commercial extracts (derived from Ascophyllum nodosum and Ecklonia maxima) on Vitis vinifera cv.
View Article and Find Full Text PDFPhysiol Plant
August 2025
Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
This study investigates the roles of strigolactones (SL) and endogenous hydrogen sulfide (HS) in regulating physiological processes in tomato seedlings under NaCl-induced stress. Exposure of the seedlings to 100 mM NaCl stress reduced K content by 21% while increasing Na accumulation by 69%, disrupting the K/Na ratio and impairing H-ATPase activity. However, the application of SL improved H-ATPase activity and K uptake and reduced Na accumulation.
View Article and Find Full Text PDF