Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two commonly encountered bottlenecks in the structure determination of a protein by X-ray crystallography are screening for conditions that give high-quality crystals and, in the case of novel structures, finding derivatization conditions for experimental phasing. In this study, the phasing molecule 5-amino-2,4,6-triiodoisophthalic acid (I3C) was added to a random microseed matrix screen to generate high-quality crystals derivatized with I3C in a single optimization experiment. I3C, often referred to as the magic triangle, contains an aromatic ring scaffold with three bound I atoms. This approach was applied to efficiently phase the structures of hen egg-white lysozyme and the N-terminal domain of the Orf11 protein from Staphylococcus phage P68 (Orf11 NTD) using SAD phasing. The structure of Orf11 NTD suggests that it may play a role as a virion-associated lysin or endolysin.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2059798319009008DOI Listing

Publication Analysis

Top Keywords

random microseed
8
microseed matrix
8
magic triangle
8
high-quality crystals
8
orf11 ntd
8
combining random
4
matrix screening
4
screening magic
4
triangle efficient
4
efficient structure
4

Similar Publications

Purpose: To determine whether addition of external beam radiation therapy (EBRT) to brachytherapy (BT) (COMBO) compared with BT alone would improve 5-year freedom from progression (FFP) in intermediate-risk prostate cancer.

Methods: Men with prostate cancer stage cT1c-T2bN0M0, Gleason Score (GS) 2-6 and prostate-specific antigen (PSA) 10-20 or GS 7, and PSA < 10 were eligible. The COMBO arm was EBRT (45 Gy in 25 fractions) to prostate and seminal vesicles followed by BT prostate boost (110 Gy if 125-Iodine, 100 Gy if 103-Pd).

View Article and Find Full Text PDF

Protein structure elucidation using X-ray crystallography requires both high quality diffracting crystals and computational solution of the diffraction phase problem. Novel structures that lack a suitable homology model are often derivatized with heavy atoms to provide experimental phase information. The presented protocol efficiently generates derivatized protein crystals by combining random microseeding matrix screening with derivatization with a heavy atom molecule I3C (5-amino-2,4,6-triiodoisophthalic acid).

View Article and Find Full Text PDF

Two commonly encountered bottlenecks in the structure determination of a protein by X-ray crystallography are screening for conditions that give high-quality crystals and, in the case of novel structures, finding derivatization conditions for experimental phasing. In this study, the phasing molecule 5-amino-2,4,6-triiodoisophthalic acid (I3C) was added to a random microseed matrix screen to generate high-quality crystals derivatized with I3C in a single optimization experiment. I3C, often referred to as the magic triangle, contains an aromatic ring scaffold with three bound I atoms.

View Article and Find Full Text PDF

A novel microseeding method for the crystallization of membrane proteins in lipidic cubic phase.

Acta Crystallogr F Struct Biol Commun

April 2016

Douglas Instruments Ltd, East Garston, Hungerford RG17 7HD, England.

Random microseed matrix screening (rMMS), in which seed crystals are added to random crystallization screens, is an important breakthrough in soluble protein crystallization that increases the number of crystallization hits that are available for optimization. This greatly increases the number of soluble protein structures generated every year by typical structural biology laboratories. Inspired by this success, rMMS has been adapted to the crystallization of membrane proteins, making LCP seed stock by scaling up LCP crystallization conditions without changing the physical and chemical parameters that are critical for crystallization.

View Article and Find Full Text PDF