Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Perivascular adipose tissue (PVAT) is implicated in the pathophysiology of cardiovascular disease, especially in obese individuals in which the quantity of renal and visceral PVAT is markedly increased. The control of arterial tone by PVAT has emerged as a relatively new field of experimental hypertension research. The discovery of this prototype of vasoregulation has been mostly inferred from data obtained using wire myography. Currently, there is a major discussion on distinguishing between biological vs. technical replicates in biomedical studies, which resulted in numerous guidelines being published on planning studies and publishing data by societies, journals, and associations. Experimental study designs are determined depending on how the experimentator distinguishes between biological vs. technical replicates. These definitions determine the ultimate standards required for making submissions to certain journals. In this article, we examine possible outcomes of different experimental study designs on PVAT control of arterial tone using isolated arteries. Based on experimental data, we determine the sample size and power of statistical analyses for such experiments. We discuss whether -values should correspond to the number of arterial rings and analyze the resulting effects if those numbers are averaged to provide a single -value per animal, or whether the hierarchical statistical method represents an alternative for analyzing such kind of data. Our analyses show that that the data (logEC) from (+) PVAT to (-) PVAT arteries are clustered. Intraclass correlation (ICC) was 31.4%. Moreover, it appeared that the hierarchical approach was better than regular statistical tests as the analyses revealed by a better goodness of fit (v-2LL test). Based on our results, we propose to use at least three independent arterial rings from each from three animals or at least seven arterial rings from each from two animals for each group, i.e., (+) PVAT vs. (-) PVAT. Finally, we discuss a clinical situation where distinguishing between biological vs. technical replicates can lead to absurd situations in clinical decision makings. We conclude that discrimination between biological vs. technical replicates is helpful in experimental studies but is difficult to implement in everyday's clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595250PMC
http://dx.doi.org/10.3389/fmed.2019.00126DOI Listing

Publication Analysis

Top Keywords

biological technical
20
technical replicates
20
distinguishing biological
12
arterial rings
12
isolated arteries
8
pvat
8
control arterial
8
arterial tone
8
experimental study
8
study designs
8

Similar Publications

Phase I dose escalation trials in oncology generally aim to find the maximum tolerated dose. However, with the advent of molecular-targeted therapies and antibody drug conjugates, dose-limiting toxicities are less frequently observed, giving rise to the concept of optimal biological dose (OBD), which considers both efficacy and toxicity. The estimand framework presented in the addendum of the ICH E9(R1) guidelines strengthens the dialogue between different stakeholders by bringing in greater clarity in the clinical trial objectives and by providing alignment between the targeted estimand under consideration and the statistical analysis methods.

View Article and Find Full Text PDF

The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF

Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.

View Article and Find Full Text PDF

Exploring Differentially Expressed Genes and Understanding the Underlying Mechanisms in Glioblastoma.

Biochem Genet

September 2025

Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Kocamustafapasa, 34098, Istanbul, Turkey.

Glioblastoma is the most aggressive and malignant tumor of the central nervous system. Current treatment options, including surgical excision, radiotherapy, and chemotherapy, have Limited efficacy, with a median survival rate of approximately 15 months. To develop novel therapeutics, it is crucial to understand the underlying molecular mechanisms driving glioblastoma.

View Article and Find Full Text PDF