A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evaluation of the Normal Airway Morphology Using Optical Coherence Tomography. | LitMetric

Evaluation of the Normal Airway Morphology Using Optical Coherence Tomography.

Chest

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. Electronic address:

Published: November 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The anatomic location of small airways, the distribution of airway cartilage, and their correlation with ageing have not been well elucidated. The objective of this article was to explore the morphologic characteristics of small airways in vivo, and how airway structural changes correlate with age using endobronchial optical coherence tomography (EB-OCT).

Methods: We recruited 112 subjects with peripheral pulmonary nodules. Participants underwent CT scan, spirometry, and EB-OCT measurements. We measured the airway internal diameter, the inner area (Ai), the airway wall area percentage (Aw%), and the thickness of airway cartilage. EB-OCT airway structural characteristics at different age intervals were analyzed, and the association between airway morphology and age was evaluated.

Results: Of the small airways, 47.3% originated from the seventh generation of bronchi. Cartilage was uniformly present in the third to sixth generation of bronchi, despite a decreasing proportion of cartilage from the seventh to ninth generation of bronchi (92.4%, 54.5%, and 26.8%, respectively). The thickness of airway cartilage progressively decreased with older age. In subjects 40 to 54 years of age, Ai from the third to sixth generation correlated positively with age (r = 0.577, P < .001). Both Ai from the third to sixth generation and Ai from the seventh to ninth generation correlated negatively with age in subjects 55 to 69 years of age (r = -0.374, P = .021 and r = -0.410, P = .011). Aw% from the third to sixth generation and Aw% from the seventh to ninth generation did not correlate significantly with age.

Conclusions: Small airways are mainly located at the seventh generation, where cartilaginous structures are present despite reduced distribution in more distal airways, and the thickness decreased in older age. Reduction in luminal area of medium-to-small airways might be the morphologic changes associated with ageing (ie, > 55 years of age).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chest.2019.06.009DOI Listing

Publication Analysis

Top Keywords

small airways
16
third sixth
16
sixth generation
16
airway cartilage
12
generation bronchi
12
seventh ninth
12
ninth generation
12
years age
12
age
10
airway
9

Similar Publications