Effects of Leachates from UV-Weathered Microplastic in Cell-Based Bioassays.

Environ Sci Technol

Department of Bioanalytical Ecotoxicology and Department of Cell Toxicology , Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 , DE-04318 Leipzig , Germany.

Published: August 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Standard ecotoxicological testing of microplastic does not provide insight into the influence that environmental weathering by, e.g., UV light has on related effects. In this study, we leached chemicals from plastic into artificial seawater during simulated UV-induced weathering. We tested largely additive-free preproduction polyethylene, polyethylene terephthalate, polypropylene, and polystyrene and two types of plastic obtained from electronic equipment as positive controls. Leachates were concentrated by solid-phase extraction and dosed into cell-based bioassays that cover (i) cytotoxicity; (ii) activation of metabolic enzymes via binding to the arylhydrocarbon receptor (AhR) and the peroxisome proliferator-activated receptor (PPARγ); (iii) specific, receptor-mediated effects (estrogenicity, ERα); and (iv) adaptive response to oxidative stress (AREc32). LC-HRMS analysis was used to identify possible chain-scission products of polymer degradation, which were then tested in AREc32 and PPARγ. Explicit activation of all assays by the positive controls provided proof-of-concept of the experimental setup to demonstrate effects of chemicals liberated during weathering. All plastic leachates activated the oxidative stress response, in most cases with increased induction by UV-treated samples compared to dark controls. For PPARγ, polyethylene-specific effects were partially explained by the detected dicarboxylic acids. Since the preproduction plastic showed low effects often in the range of the blanks future studies should investigate implications of weathering on end consumer products containing additives.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b02400DOI Listing

Publication Analysis

Top Keywords

cell-based bioassays
8
positive controls
8
oxidative stress
8
effects
6
effects leachates
4
leachates uv-weathered
4
uv-weathered microplastic
4
microplastic cell-based
4
bioassays standard
4
standard ecotoxicological
4

Similar Publications

Tetrodotoxin (TTX), the pufferfish toxin, has the potential to cause fatal food poisoning because of its potent voltage-gated sodium channel (Na) blocking activity. 4-epiTTX, 11-norTTX-6(S)-ol, and 11-oxoTTX are the major TTX analogues found in marine animals; thus, their chemical properties and biological activities should be determined. In this study, these three TTX analogues were purified to a high level (purity >97%) from pufferfish and newts.

View Article and Find Full Text PDF

Controlled release systems, such as polymeric microparticles (MPs), have emerged as a promising solution to extend the bioavailability and reduce dosing frequency for biologic drugs; however, the formulation of these systems to encapsulate highly sensitive, hydrophilic biologic drugs within hydrophobic polymers remains a nontrivial task. Although scalable manufacturing and FDA approval of single emulsion processes encapsulating small molecules has been achieved, scaling more complex double emulsion processes to encapsulate hydrophilic biologics remains more challenging. : Here, we demonstrate that two hydrophilic, low-molecular-weight, recombinant chemokines, CCL22 and CCL2, can be encapsulated in poly(lactic-co-glycolic acid) (PLGA) MPs using a single emulsion method where the proteins are dissolved in an organic solvent during formulation.

View Article and Find Full Text PDF

IP6 Kinase Inhibitor Screening Assays.

Methods Mol Biol

August 2025

Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.

Inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), play crucial roles in various biological processes. Pharmacologic inhibition of IP6K has potential therapeutic benefits for treating type II diabetes, venous thrombosis, chronic kidney disease, and psychiatric disorders. This chapter describes the identification of IP6K inhibitors through kinase-activity-based high-throughput assays and dose-response assay.

View Article and Find Full Text PDF

The increasing global demand for diverse and health-promoting foods has led to the expansion of tropical fruit cultivation beyond their native regions, notably into the Mediterranean area. This shift necessitates a deeper understanding of their phytochemical profiles, as environmental factors in new cultivation contexts can significantly influence the biosynthesis of their bioactive compounds. In this study, we explored the phytochemical and antioxidant properties of pitaya fruit, focusing on chemical fractionation and the link between its bioactive components and functional benefits.

View Article and Find Full Text PDF

Preexisting anti-AAV antibodies pose a significant challenge to the success of Adeno-associated Virus (AAV) mediated gene therapies, as they can diminish therapeutic effectiveness, restrict patient eligibility for treatment, and cause serious health issues during treatment. This study introduces the first point-of-care (POC) test for the rapid, quantitative detection of AAV8 binding antibodies in patients' plasma, serum, and blood, leveraging Chembio's Dual Path Platform (DPP) technology. The DPP AAV8 Total Antibody (TAb) assay delivers results within 20 min from sample addition, with a dynamic range of 0-32 µg/ml when evaluated with purified human polyclonal antibodies that bind to AAV8, with reasonable specificity and sensitivity relative to Chembio's AAV8 TAb ELISA (R² = 0.

View Article and Find Full Text PDF