Publications by authors named "Matthew MacLeod"

Dynamic actin cytoskeleton reorganization enables plant developmental processes requiring polarized transport such as root hair and leaf trichome formation. The SCAR/WAVE complex plays a crucial role in regulating these dynamics through ARP2/3-mediated actin branching. genes occur as small families across a wide range of plant species, but whether and how they fulfill different functions remains unclear.

View Article and Find Full Text PDF

Biotic stresses such as fungal pathogens significantly affect global crop yields. Understanding of the plant-pathogen interactions during root infection, especially in monocot crops, remains limited compared to fungal colonizations of dicots. The infection process of several cereal crop root-damaging fungi and oomycetes is highly similar to root infections by the pathogen model Phytophthora palmivora.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic underlined the need for pandemic planning but also brought into focus the use of mathematical modelling to support public health decisions. The types of models needed (compartment, agent-based, importation) are described. Best practices regarding biological realism (including the need for multidisciplinary expert advisors to modellers), model complexity, consideration of uncertainty and communications to decision-makers and the public are outlined.

View Article and Find Full Text PDF

The threat posed by plastic in the environment is poorly characterized due to uncertainties and unknowns about sources, transport, transformation and removal processes, and the properties of the plastic pollution itself. Plastic creates a footprint of particulate pollution with a diversity of composition, size and shape, and a halo of chemicals. In this Perspective, we argue that process-based mass-balance models could provide a platform to synthesize knowledge about plastic pollution as a function of its measurable intrinsic properties.

View Article and Find Full Text PDF

Nontarget analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is now widely used to detect pollutants in the environment. Shifting away from targeted methods has led to detection of previously unseen chemicals, and assessing the risk posed by these newly detected chemicals is an important challenge. Assessing exposure and toxicity of chemicals detected with nontarget HRMS is highly dependent on the knowledge of the structure of the chemical.

View Article and Find Full Text PDF

The climate in Europe is warming twice as fast as it is across the rest of the globe, and in Sweden annual mean temperatures are forecast to increase by up to 3-6 °C by 2100, with increasing frequency and magnitude of floods, heatwaves, and other extreme weather. These climate change-related environmental factors and the response of humans at the individual and collective level will affect the mobilization and transport of and human exposure to chemical pollutants in the environment. We conducted a literature review of possible future impacts of global change in response to a changing climate on chemical pollutants in the environment and human exposure, with a focus on drivers of change in exposure of the Swedish population to chemicals in the indoor and outdoor environment.

View Article and Find Full Text PDF

Polar regions should be given greater consideration with respect to the monitoring, risk assessment, and management of potentially harmful chemicals, consistent with requirements of the precautionary principle. Protecting the vulnerable polar environments requires (i) raising political and public awareness and (ii) restricting and preventing global emissions of harmful chemicals at their sources. The Berlin Statement is the outcome of an international workshop with representatives of the European Commission, the Arctic Council, the Antarctic Treaty Consultative Meeting, the Stockholm Convention on Persistent Organic Pollutants (POPs), environmental specimen banks, and data centers, as well as scientists from various international research institutions.

View Article and Find Full Text PDF

Polymers are the main constituents of many materials and products in our modern world. However, their environmental safety is not assessed with the same level of detail as done for non-polymeric chemical substances. Moreover, the fundamentals of contemporary regulatory approaches for polymers were developed in the early 1990s, with little change occurring since then.

View Article and Find Full Text PDF

To achieve water quality objectives of the zero pollution action plan in Europe, rapid methods are needed to identify the presence of toxic substances in complex water samples. However, only a small fraction of chemicals detected with nontarget high-resolution mass spectrometry can be identified, and fewer have ecotoxicological data available. We hypothesized that ecotoxicological data could be predicted for unknown molecular features in data-rich high-resolution mass spectrometry (HRMS) spectra, thereby circumventing time-consuming steps of molecular identification and rapidly flagging molecules of potentially high toxicity in complex samples.

View Article and Find Full Text PDF

Substances of unknown or variable composition, complex reaction products, and biological materials (UVCBs) pose a unique challenge to regulators and to product registrants, who are required to characterize their fate, exposure, hazard, and potential risks to human health and the environment. To address these challenges and ensure an efficient and fit-for-purpose process, it is proposed that the ecological risks of UVCBs be assessed following a tiered strategy. The development of this approach required exploring how substance composition ties into hazard and exposure information and determining the extent to which a UVCB needs to be characterized to ensure a robust risk assessment.

View Article and Find Full Text PDF

The environmental risk assessment of UVCBs (, substances of unknown or variable composition, complex reaction products, or biological materials) is challenging due to their inherent complexity. A particular problem is that UVCBs can contain constituents with unidentified chemical structures and/or have variable composition of constituents from batch to batch. Moreover, the composition of a UVCB in the environment is not the same as that of the UVCB in a product, meaning that a risk assessment based on environmental exposure to the UVCB in a product does not represent the actual environmental risk.

View Article and Find Full Text PDF

European agricultural development in the 21st century will be affected by a host of global changes, including climate change, changes in agricultural technologies and practices, and a shift towards a circular economy. The type and quantity of chemicals used, emitted, and cycled through agricultural systems in Europe will change, driven by shifts in the use patterns of pesticides, veterinary pharmaceuticals, reclaimed wastewater used for irrigation, and biosolids. Climate change will also impact the chemical persistence, fate, and transport processes that dictate environmental exposure.

View Article and Find Full Text PDF

By 2050, the global population is predicted to reach nine billion, with almost three quarters living in cities. The road to 2050 will be marked by changes in land use, climate, and the management of water and food across the world. These global changes (GCs) will likely affect the emissions, transport, and fate of chemicals, and thus the exposure of the natural environment to chemicals.

View Article and Find Full Text PDF
Article Synopsis
  • The production and release of novel entities is exceeding the planetary boundary due to rapid increases that outpace our ability to monitor them.
  • The "novel entities" boundary encompasses substances that are new to the Earth and can significantly threaten global systems, with plastic pollution highlighted as a major concern.
  • Urgent action is needed to minimize the harmful effects of these entities, as their persistence and varied risks continue to endanger Earth's integrity.
View Article and Find Full Text PDF

Substances classified as unknown or variable composition, complex reaction products or biological origin (UVCB) present a challenge for environmental hazard and risk assessment. Here, we present a novel approach for whole-substance bioconcentration testing applied to cedarwood oil-an essential oil composed of volatile, hydrophobic organic chemicals. The method yields whole-body elimination rate constants for a mixture of constituents.

View Article and Find Full Text PDF

Plastic pollution accumulating in an area of the environment is considered "poorly reversible" if natural mineralization processes occurring there are slow and engineered remediation solutions are improbable. Should negative outcomes in these areas arise as a consequence of plastic pollution, they will be practically irreversible. Potential impacts from poorly reversible plastic pollution include changes to carbon and nutrient cycles; habitat changes within soils, sediments, and aquatic ecosystems; co-occurring biological impacts on endangered or keystone species; ecotoxicity; and related societal impacts.

View Article and Find Full Text PDF

AbstractThe production and use of plastic over many decades has resulted in its accumulation in the world's oceans. Plastic debris poses a range of potential risks to the marine environment and its biota. Especially, the potential hazards of small plastic debris and chemicals associated with plastic have not been extensively studied.

View Article and Find Full Text PDF
Article Synopsis
  • Research from 2017 indicated that plastic litter in the ocean meets two of three criteria for threatening planetary boundaries related to chemical pollution and novel entities: it exposes ecosystems globally and is difficult to reverse.
  • Recent findings suggest that weathered plastics, including macroplastics and microplastics, can have greater harmful effects compared to natural particles of similar size, raising concerns about their long-term impact.
  • The study concludes that weathering plastics likely meet the third criterion of disrupting vital earth systems, which poses a significant planetary boundary threat, and calls for further research to understand their toxicological risks and to refine pollution thresholds.
View Article and Find Full Text PDF

Cedarwood oil is an essential oil used as a fragrance material and insect repellent. Its main constituents are sesquiterpenes which are potentially bioaccumulative according to the REACH screening criteria. Cedarwood oil is a complex mixture of hydrophobic and volatile organic chemicals.

View Article and Find Full Text PDF

Oxabenzonorbornadiene (OBD) is a useful synthetic intermediate, which can be readily activated by transition metal complexes with great face selectivity due to its dual-faced nature and intrinsic angle strain on the alkene. To date, the understanding of transition-metal catalyzed reactions of OBD itself has burgeoned; however, this has not been the case for unsymmetrical OBDs. Throughout the development of these reactions, the nature of C1-substituent has proven to have a profound effect on both the reactivity and selectivity of the outcome of the reaction.

View Article and Find Full Text PDF

Assuming equilibrium partitioning between the gas and particle phases has been shown to overestimate the fraction of low-volatility chemicals in the particle phase. Here, we present a new steady-state mass balance model that includes separate compartments for fine and coarse aerosols and the gas phase and study its sensitivity to the input parameters. We apply the new model to investigate deviations from equilibrium partitioning by exploring model scenarios for seven generic aerosol scenarios representing different environments and different distributions of emissions as the gas phase, fine aerosol, and coarse aerosol.

View Article and Find Full Text PDF