Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hydrazine (NH) has been classified as a potential carcinogen with its high toxicity, which can be readily absorbed through the skin or via breathing directly. Although some fluorescent probes have been developed for imaging of NH, very little can be used for imaging of NH in vivo because of its short emission wavelength. In this study, a new colorimetric and near-infrared (NIR) fluorescent probe CF-1 based on a seminaphthorhodafluor dye was successfully designed and used for hydrazine determination. Upon reaction with NH, probe CF-1 showed obvious off-on NIR emission spectrum centered at 657 nm, as well as a distinct color change that can be distinguished by the naked eye. The results of fluorescence spectrum experiments indicated that probe CF-1 has high selectivity and low detection limitation (40.6 nM in the solution). Probe CF-1 has low cytotoxicity and was applied to imaging hydrazine in mitochondria of HeLa cells and in zebrafish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2019.117307 | DOI Listing |