98%
921
2 minutes
20
Almond shell, a by-product obtained from the nut industry, was valorised into low degree of polymerisation xylooligosaccharides using alkaline pretreatment and enzymatic hydrolysis. The effect of particle size on hemicellulose recovery upon pretreatment was studied using 1 and 2 M NaOH. It was observed that particle size significantly influences hemicellulose recovery, as particles below 120 µm resulted in near complete recovery at 2 M NaOH. Enzymatic hydrolysis of hemicellulose was optimised using response surface methodology, to obtain efficient xylooligosaccharides production at low enzyme dose and high substrate concentration. For higher XOS yield, an enzyme dose of 10 U and substrate concentration <2% was optimal. The in-vitro human faecal fermentation study revealed no significant difference in gas and short chain fatty acid level among substrates evaluated. It was observed that short chain oligosaccharides produce higher level of acetate than medium chain oligosaccharides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2019.06.012 | DOI Listing |
Biochim Biophys Acta Rev Cancer
September 2025
Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China; Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China; National Regional Medical Cente
Pancreatic ductal adenocarcinoma (PDAC) exhibits persistent resistance to immunotherapy, with a 5-year survival rate around 10 %. The CD39-CD73-adenosine axis emerges as a critical mediator of immune evasion in PDAC, generating pathologically elevated adenosine concentrations that systematically suppress anti-tumor immunity. This purinergic pathway operates through sequential ATP hydrolysis by CD39 and CD73 ectonucleotidases, producing adenosine that engages four G-protein-coupled receptors (A1, A2A, A2B, A3) to orchestrate comprehensive immunosuppression.
View Article and Find Full Text PDFChemSusChem
September 2025
Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany.
This article presents an advanced iteration of the polyoxometalate (POM)-Ionosolv concept to generate biobased methyl formate in high yield and a bleached cellulose pulp from lignocellulosic biomass in a single-step operation by using redox-balanced POM catalysts and molecular oxygen in alcoholic ionic liquid (IL) mixtures. The performance of the three Ionosolv-ILs triethylammonium hydrogen sulfate ([TEA][HSO]), N,N-dimethylbutylammonium hydrogen sulfate ([DMBA][HSO4]), and tributylmethylphosphonium methyl sulfate ([TBMP][MeSO]), mixed with methanol (MeOH) (30/70 wt%), is evaluated by methyl formate yield from extracted hemicellulose and lignin as well as purity of the bleached cellulose pulp in the presence of various Keggin-type POMs. The redox-balanced HPVMnMoO POM catalyst in [TBMP][MeSO]/MeOH emerge as the most effective combination, achieving 20% methyl formate yield from commercial beech wood.
View Article and Find Full Text PDFACS Catal
August 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Chlorinated hydrocarbons are widely used as solvents and synthetic intermediates, but their chemical persistence can cause hazardous environmental accumulation. Haloalkane dehalogenase from (DhlA) is a bacterial enzyme that naturally converts toxic chloroalkanes into less harmful alcohols. Using a multiscale approach based on the empirical valence bond method, we investigate the catalytic mechanism of 1,2-dichloroethane dehalogenation within DhlA and its mutants.
View Article and Find Full Text PDFBeilstein J Nanotechnol
September 2025
Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea.
Transient electronics are emerging as a promising class of devices designed to disappear after a defined operational period, addressing growing concerns over sustainability and long-term biocompatibility. Built from biodegradable materials that undergo hydrolysis or enzymatic degradation, these systems are particularly well suited for temporary implantable applications, such as neural monitors, wireless stimulators, and drug delivery vehicles, as well as environmentally benign electronics for soil or aquatic disposal. Despite their potential, key challenges remain in expanding the material set for diverse functionalities, achieving high-density integration for advanced operations, and enabling precise lifetime control through strategies such as protective encapsulation.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China.. Electronic address:
The multi-component deep eutectic solvents (DES) have emerged as indispensable tools in the lignocellulosic pretreatment process, facilitating the efficient biotransformation of biomass sugars into valuable products. In this investigation, FeCl was ingeniously incorporated to amplify the pretreatment efficacy of a DES synthesized from cetyltrimethylammonium bromide (CTAB) and lactic acid (LA), specifically targeting poplar sawdust (PS). Remarkably, under the meticulously optimized molar ratio of 1: 4:1, this innovative ternary DES achieved an unprecedented removal of 68.
View Article and Find Full Text PDF