A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enzymatic Biofuel-Cell-Based Self-Powered Biosensor Integrated with DNA Amplification Strategy for Ultrasensitive Detection of Single-Nucleotide Polymorphism. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Enzymatic biofuel cell (EBFC)-based self-powered biosensors could offer significant advantages: no requirement for an external power source, simple instruments, and easy miniaturization. However, they also suffered from the limitations of lower sensitivity or specific targets. In this study, a self-powered biosensor for the ultrasensitive and selective detection of single nucleotide polymorphisms (SNPs) produced by combining the toehold-mediated strand displacement reaction (SDR) and DNA hybridization chain reaction (HCR) was proposed. Herein, the capture probe (CP) with an external toehold was designed to switch on the sensing system. In the presence of target sequence, both SDR and DNA HCR reaction would happen to produce a long double-helix chain. Because of the electrostatic interaction between [Ru(NH)] and the double-helix chain described above, the open circuit voltage ( E) of the as-proposed biosensor was significantly elevated, thus realizing the detection of SNPs. Overall, in this work, an ingeniously constructed self-powered biosensor for the detection of SNPs was created by integrating EBFCs with a DNA amplification strategy. Furthermore, the as-proposed self-powered biosensor not only showed prominent specificity to distinguish the p53 gene fragment from random sequences (e.g., single-base mutant sequences) but exhibited excellent sensitivity with the detection limit of 20 aM. More importantly, the results obtained from the real cell lysate sample have laid a strong foundation for disease diagnostics and, potentially, as a powerful tool for even more fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b02510DOI Listing

Publication Analysis

Top Keywords

self-powered biosensor
16
dna amplification
8
amplification strategy
8
sdr dna
8
double-helix chain
8
detection snps
8
self-powered
5
biosensor
5
detection
5
enzymatic biofuel-cell-based
4

Similar Publications