Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper proposes a methodology for dealing with an issue of crucial practical importance in real engineering systems such as fault detection and recovery of a sensor. The main goal is to define a strategy to identify a malfunctioning sensor and to establish the correct measurement value in those cases. As study case, we use the data collected from a geothermal heat exchanger installed as part of the heat pump installation in a bioclimatic house. The sensor behaviour is modeled by using six different machine learning techniques: Random decision forests, gradient boosting, extremely randomized trees, adaptive boosting, k-nearest neighbors, and shallow neural networks. The achieved results suggest that this methodology is a very satisfactory solution for this kind of systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631391PMC
http://dx.doi.org/10.3390/s19122740DOI Listing

Publication Analysis

Top Keywords

fault detection
8
geothermal heat
8
heat exchanger
8
detection system
4
system geothermal
4
sensor
4
exchanger sensor
4
sensor based
4
based intelligent
4
intelligent techniques
4

Similar Publications

This paper presents a novel multiscale signal processing framework for power quality disturbance (PQD) and cyber intrusion detection in smart grids, combining Non-Subsampled Contourlet Transform (NSCT), Split Augmented Lagrangian Shrinkage Algorithm (SALSA), and Morphological Component Analysis (MCA). A key innovation lies in an adaptive weighting mechanism within NSCT's directional sub bands, enabling dynamic energy redistribution and enhanced representation of both low-frequency anomalies (e.g.

View Article and Find Full Text PDF

Image monitoring is an important research problem that has wide applications in various fields, including manufacturing industries, satellite imaging, medical diagnostics, and so forth. Traditional image monitoring control charts perform rather poorly when the changes occur at very small regions of the image, and when the changes of image intensity values are small in those regions. Their performances get worse if the images contain noise, and the changes occur near the edges of image objects.

View Article and Find Full Text PDF

Breast cancer is highlighted in recent research as one of the most prevalent types of cancer. Timely identification is essential for enhancing patient results and decreasing fatality rates. Utilizing computer-assisted detection and diagnosis early on may greatly improve the chances of recovery by accurately predicting outcomes and developing suitable treatment plans.

View Article and Find Full Text PDF

In recent years, electric vehicles (EVs) have become increasingly popular, driven by advancements in battery technology, growing environmental awareness, and the demand for sustainable transportation. Compared to internal combustion engines, EVs not only produce fewer emissions but also offer greater energy efficiency, leading to reduced operating costs. Despite these advantages, concerns about battery failures have been a significant safety issue for EVs.

View Article and Find Full Text PDF

Misalignment is among the most frequent mechanical faults in rotating electrical machines, often resulting in partial or complete motor failure over time. To tackle this issue, the present study proposes an innovative methodology for diagnosing misalignment faults in rotating electrical machines. The method integrates the dual-tree complex wavelet transform with a refined composite multiscale fluctuation dispersion entropy algorithm (DTCWT-RCMFDE) for feature extraction, combined with the least-squares support vector machines algorithm (LSSVM) for fault classification.

View Article and Find Full Text PDF