Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Autoimmune diseases can be diagnosed early through the detection of autoantibodies. The aim of this study was to determine the risk of organ-specific autoimmunity in individuals with a family history of type 1 diabetes.

Research Design And Methods: The study cohort included 2,441 first-degree relatives of patients with type 1 diabetes who were prospectively followed from birth to a maximum of 29.4 years (median 13.2 years). All were tested regularly for the development of autoantibodies associated with type 1 diabetes (islet), celiac disease (transglutaminase), or thyroid autoimmunity (thyroid peroxidase). The outcome was defined as an autoantibody-positive status on two consecutive samples.

Results: In total, 394 relatives developed one ( = 353) or more ( = 41) of the three disease-associated autoantibodies during follow-up. The risk by age 20 years was 8.0% (95% CI 6.8-9.2%) for islet autoantibodies, 6.3% (5.1-7.5%) for transglutaminase autoantibodies, 10.7% (8.9-12.5%) for thyroid peroxidase autoantibodies, and 21.5% (19.5-23.5%) for any of these autoantibodies. Each of the three disease-associated autoantibodies was defined by distinct HLA, sex, genetic, and age profiles. The risk of developing any of these autoantibodies was 56.5% (40.8-72.2%) in relatives with HLA DR3/DR3 and 44.4% (36.6-52.2%) in relatives with HLA DR3/DR4-DQ8.

Conclusions: Relatives of patients with type 1 diabetes have a very high risk of organ-specific autoimmunity. Appropriate counseling and genetic and autoantibody testing for multiple autoimmune diseases may be warranted for relatives of patients with type 1 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.2337/dc19-0315DOI Listing

Publication Analysis

Top Keywords

type diabetes
20
relatives patients
16
patients type
16
risk organ-specific
12
organ-specific autoimmunity
12
autoantibodies
9
hla sex
8
first-degree relatives
8
autoimmune diseases
8
thyroid peroxidase
8

Similar Publications

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are a fairly new class of agents for diabetes that have demonstrated significant benefits in glycemic control and cardiovascular outcomes with outpatient use. The aim of this review is to provide an overview of the effect of SGLT2i use on glycemic control and clinical outcomes in the hospital setting.An electronic search of PubMed was conducted to analyze publications that assessed the inpatient use of SGLT2i and included patients with diabetes.

View Article and Find Full Text PDF

Background: While osteoporosis in primary hyperparathyroidism (PHPT) is widely studied, PHPT patients with osteopenia remain less characterized. This study aimed to evaluate the prevalence, biochemical features, and estimated fracture risk of osteopenic PHPT patients in a real-life cohort.

Methods: We retrospectively analyzed a consecutive series of PHPT patients with available densitometric data at three sites.

View Article and Find Full Text PDF

Expression of long non-coding RNAs MALAT1, MEG3, and XIST in gestational diabetes mellitus: a cross-sectional study.

Acta Diabetol

September 2025

Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, 88, College St. College Square, Kolkata, West Bengal, 700073, India.

Background And Aims: Gestational diabetes mellitus (GDM) is defined as glucose intolerance first identified during pregnancy that does not meet the criteria for overt diabetes. Its pathophysiology shares key features with type 2 diabetes mellitus (T2D), including insulin resistance and inflammation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are implicated in T2D.

View Article and Find Full Text PDF

Purpose: Infective endocarditis (IE) has been associated with severe outcomes when complicated by diabetes mellitus (DM). We aimed to report characteristics, microbial etiology, and mortality for patients with IE stratified by DM from a nationwide cohort.

Methods: We used Danish registries, and patients with first-time IE (2010-2020) were stratified by DM.

View Article and Find Full Text PDF

Glucagon dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), yet its early hepatic effects remain unclear. Here, we demonstrate that glucagon-induced gluconeogenesis is markedly enhanced in primary hepatocytes from prediabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a well-established model of human T2DM. Compared to control LETO rats, OLETF hepatocytes showed significantly higher glucagon-stimulated expression of gluconeogenic genes (Pepck, G6pase, Fbp1) at both mRNA and protein levels, along with elevated glucose production.

View Article and Find Full Text PDF