Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: The recent advances in technology are opening a new opportunity to remotely evaluate motor features in people with Parkinson's disease (PD). We hypothesized that typing on an electronic device, a habitual behavior facilitated by the nigrostriatal dopaminergic pathway, could allow for objectively and nonobtrusively monitoring parkinsonian features and response to medication in an at-home setting.
Methods: We enrolled 31 participants recently diagnosed with PD who were due to start dopaminergic treatment and 30 age-matched controls. We remotely monitored their typing pattern during a 6-month (24 weeks) follow-up period before and while dopaminergic medications were being titrated. The typing data were used to develop a novel algorithm based on recursive neural networks and detect participants' responses to medication. The latter were defined by the Unified Parkinson's Disease Rating Scale-III (UPDRS-III) minimal clinically important difference. Furthermore, we tested the accuracy of the algorithm to predict the final response to medication as early as 21 weeks prior to the final 6-month clinical outcome.
Results: The score on the novel algorithm based on recursive neural networks had an overall moderate kappa agreement and fair area under the receiver operating characteristic (ROC) curve with the time-coincident UPDRS-III minimal clinically important difference. The participants classified as responders at the final visit (based on the UPDRS-III minimal clinically important difference) had higher scores on the novel algorithm based on recursive neural networks when compared with the participants with stable UPDRS-III, from the third week of the study onward.
Conclusions: This preliminary study suggests that remotely gathered unsupervised typing data allows for the accurate detection and prediction of drug response in PD. © 2019 International Parkinson and Movement Disorder Society.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mds.27772 | DOI Listing |