Identification of Disease Risk DNA Variations is Shaping the Future of Precision Health.

Genes (Basel)

Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.

Published: June 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, the knowledge generated by decoding the human genome has allowed groundbreaking genetic research to better understand genomic architecture and heritability in healthy and disease states. The vast amount of data generated over time and yet to be generated provides the basis for translational research towards the development of preventive and therapeutic strategies for many conditions. In this special issue, we highlight the discoveries of disease-associated and protective DNA variations in common human diseases and developmental disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627794PMC
http://dx.doi.org/10.3390/genes10060450DOI Listing

Publication Analysis

Top Keywords

dna variations
8
identification disease
4
disease risk
4
risk dna
4
variations shaping
4
shaping future
4
future precision
4
precision health
4
health years
4
years knowledge
4

Similar Publications

The Epigenetic Regulation of Agronomic Traits and Environmental Adaptability in Brassicas.

Plant Cell Environ

September 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, International Joint R & D Center of Hebei Prov

As essential sources of vegetables, oilseeds, and forage, Brassica crops exhibit complex epigenetic regulation mechanisms involving histone modifications, DNA modifications, RNA modifications, noncoding RNAs, and chromatin remodelling. The agronomic traits and environmental adaptability of crops are regulated by both genetic and epigenetic mechanisms, while epigenetic variation can affect plant phenotypes without changing gene sequences. Furthermore, the impact of epigenetic modifications on plant phenotype has accelerated the crop breeding process.

View Article and Find Full Text PDF

This study addresses historical uncertainties regarding morphological variation in the paraprocts of Tupiperla illiesi, a stonefly with a complex taxonomic history. We tested whether these variations represent phenotypic plasticity or distinct species using integrative taxonomy. Adult gripopterygids were collected from Estação Biológica de Boracéia utilizing Malaise and light traps.

View Article and Find Full Text PDF

Forensic applications of compound genetic markers: trends and future directions.

Sci Justice

September 2025

School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban 4000, South Africa. Electronic address:

A compound marker integrates two or more genetic markers into a single assay. The application of compound markers enhances the predictive accuracy of genetic testing by leveraging the strengths of different genetic variations while mitigating the limitations of individual markers. Compound markers include SNP-SNPs, SNP-STRs, DIP-SNPs, DIP-STRs, Multi-In/Dels, CpG-SNPs, CpG-STRs/CpG-In/Del, and Methylation-Microhaplotypes.

View Article and Find Full Text PDF

CRISPR/Cas12a DTR system: a topology-guided Cas12a assay for specific dual detection of RNA and DNA targets.

Nucleic Acids Res

September 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei 430042, China.

The CRISPR/Cas12a technology has revolutionized molecular diagnostics. However, existing Cas12a systems depend on continuous target DNA activation, which limits them to single-target detection. In this study, we developed a novel topology-guided Cas12a system, the double-target responsive (DTR) system, capable of being activated by noncontiguous dual RNA/DNA targets.

View Article and Find Full Text PDF

Garlic is an important bulb vegetable which is used for both culinary and medical purposes worldwide. In vitro propagation is considered a promising technic for production and conservation of disease-free garlic seed. The efficiency of in vitro culture was studied for micropropagation of native Iranian garlic genotypes.

View Article and Find Full Text PDF