98%
921
2 minutes
20
In the last 15 years, outstanding progress has been made in understanding the function of meiotic genes in the model dicot and monocot plants Arabidopsis and rice (Oryza sativa L.), respectively. This knowledge allowed to modulate meiotic recombination in Arabidopsis and, more recently, in rice. For instance, the overall frequency of crossovers (COs) has been stimulated 2.3- and 3.2-fold through the inactivation of the rice FANCM and RECQ4 DNA helicases, respectively, two genes involved in the repair of DNA double-strand breaks (DSBs) as noncrossovers (NCOs) of the Class II crossover pathway. Differently, the programmed induction of DSBs and COs at desired sites is currently explored by guiding the SPO11-1 topoisomerase-like transesterase, initiating meiotic recombination in all eukaryotes, to specific target regions of the rice genome. Furthermore, the inactivation of 3 meiosis-specific genes, namely PAIR1, OsREC8 and OsOSD1, in the Mitosis instead of Meiosis (MiMe) mutant turned rice meiosis into mitosis, thereby abolishing recombination and achieving the first component of apomixis, apomeiosis. The successful translation of Arabidopsis results into a crop further allowed the implementation of two breakthrough strategies that triggered parthenogenesis from the MiMe unreduced clonal egg cell and completed the second component of diplosporous apomixis. Here, we review the most recent advances in and future prospects of the manipulation of meiotic recombination in rice and potentially other major crops, all essential for global food security.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790369 | PMC |
http://dx.doi.org/10.1111/pbi.13189 | DOI Listing |
NAR Cancer
September 2025
Department of Molecular Genetics and Microbiology, Duke University School of Medicine, 213 Research Drive, Durham, NC 27710, United States.
Treatment of patients with platinum-resistant ovarian cancer is a major clinical challenge. We found that high expression of a meiotic protein, Synaptonemal Complex Protein 2 (SYCP2), is associated with platinum resistance and tyrosine kinase ABL1 inhibitor sensitivity in ovarian cancer. We demonstrate that tyrosine kinase ABL1 inhibitors inhibit cancer cell proliferation more efficiently in ovarian cancer cell lines with SYCP2 overexpression.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2025
DNA Repair and Recombination Laboratory, St Vincent's Institute of Medical Research, Fitzroy VIC 3065, Australia.
Meiotic crossovers promote correct chromosome segregation and the shuffling of genetic diversity. However, the measurement of crossovers remains challenging, impeding our ability to decipher the molecular mechanisms that are necessary for their formation and regulation. Here we demonstrate a novel repurposing of the single-nucleus Assay for Transposase Accessible Chromatin with sequencing (snATAC-seq) as a simple and high-throughput method to identify and characterize meiotic crossovers from haploid testis nuclei.
View Article and Find Full Text PDFUnlabelled: Meiotic crossovers are needed to produce genetically balanced gametes. In mammals, crossover formation is mediated by a conserved set of pro-crossover proteins via mechanisms that remain unclear. Here, we characterize a mammalian pro-crossover factor HEIP1.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Key Laboratory of Mariculture and Enhancement, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China.
Gonadal development and spermatogenesis critically influence fish reproductive performance. Neomales (genetically female but functionally male) are indispensable for generating all-female populations, yet their spermatogenesis remains understudied. In the present study, we systematically investigated gonadal maturation in neomales of the large yellow croaker (), an economically important marine species exhibiting sexually dimorphic growth.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Center for Genetics, National Research Institute for Family Planning, Beijing, China.
Non-obstructive azoospermia (NOA) is often associated with genetic variants. Whole-exome sequencing (WES) has emerged as a powerful tool in studying the genetic diagnosis of NOA and to help identify novel causal gene variants. Minichromosome maintenance domain-containing 2 (MCMDC2), an atypical yet conserved MCM protein, plays a key role in meiotic recombination and the maintenance of fertility.
View Article and Find Full Text PDF