Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Long non-coding RNAs (lncRNAs) play vital roles in diabetic nephropathy (DN). This research aimed to study the potential role and underlying molecular mechanisms of long non-coding RNA MEG3 in DN. We found that MEG3 was upregulated in DN in vivo and in vitro and could enhance cell fibrosis and inflammatory response in DN. MEG3 functioned as an endogenous sponge for miR-181a in mesangial cells (MCs) via direct targeting and in an Ago2-dependent manner. MiR-181a inhibition promoted MC fibrosis and inflammatory response. In addition, Egr-1 was confirmed as a target gene of miR-181a. Further investigations verified that MEG3 promotes fibrosis and inflammatory response via the miR-181a/Egr-1/TLR4 axis in vitro and in vivo. These results provide new insights into the regulation between MEG3 and the miR-181a/Egr-1/TLR4 signaling pathway during DN progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594792 | PMC |
http://dx.doi.org/10.18632/aging.102011 | DOI Listing |