Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report on the electronic absorption spectra, conformational behavior, and intra- and intermolecular hydrogen bonds of 2,3-(dibenzimidazol-2-yl)-quinoxaline (DBIQ). The experimentally found strong solvent dependence of the absorption spectra of DBIQ solutions cannot be assigned to electronic excitations of the equilibrium ground-state DBIQ structure. Extended consideration including the nonequilibrium structures within the framework of ab initio molecular dynamics (MD) revealed the importance of torsion molecular motions not covered by the static case. The strong impact of solute-solvent hydrogen bonding on stabilization of these nonequilibrium structures and on conformational composition of DBIQ was demonstrated. A presence of twisted nonplanar geometries along the whole MD trajectory was shown to drastically influence not only energies but also characters of electronic excitations, resulting in a change of local π-π* character in a solution of 1,2-dichloroethane to charge-transfer character in polar dimethylsulfoxide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.9b00974DOI Listing

Publication Analysis

Top Keywords

absorption spectra
12
electronic absorption
8
electronic excitations
8
nonequilibrium structures
8
23-dibenzimidazol-2-ylquinoxalines unexpected
4
unexpected dynamical
4
dynamical steady-state
4
electronic
4
steady-state electronic
4
spectra report
4

Similar Publications

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

Computer simulations play an essential role in the interpretation of experimental multiphoton absorption spectra. In addition, models derived from theory allow for the establishment of "structure-property" relationships. This work contributes to these efforts and presents the results of an analysis of two- and three-photon absorptions for a set comprising 450 conjugated molecules performed at the CAM-B3LYP/aug-cc-pVDZ level.

View Article and Find Full Text PDF

Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.

View Article and Find Full Text PDF

Comparative study of spectral properties of the bovine serum albumin complexes with acridine orange and methylene blue under the effect of millimeter range electromagnetic waves.

Electromagn Biol Med

September 2025

Laboratory of Biophysics of Sub-Cellular Structures, Scientific-Research Institute of Biology, Chair of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia.

Effect of millimeter range electromagnetic waves (MM EMW) with the frequency 51.8 GHz on the interaction of DNA-specific ligands-intercalators acridine orange (AO) and methylene blue (MB) with bovine serum albumin (BSA) has been studied. The measurements were implemented by the spectroscopic methods that open new opportunities for such goals.

View Article and Find Full Text PDF

The incorporation of transitional elements into silicon or germanium-based semiconductor clusters not only notably improves their structural stability but also endows them with unprecedented multifunctionalities. In this work, the structural, vibrational, and electronic properties for copper-doped silicon and germanium cation clusters Cu (X = Si or Ge, = 6-16) are systematically investigated. The ground-state structures are identified using the PBE0 and mPW2PLYP method combined with a global search technique.

View Article and Find Full Text PDF