Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In order to determine a material's hydrogen storage potential, capacity measurements must be robust, reproducible, and accurate. Commonly, research reports focus on the gravimetric capacity, and often times the volumetric capacity is not reported. Determining volumetric capacities is not as straight-forward, especially for amorphous materials. This is the first study to compare measurement reproducibility across laboratories for excess and total volumetric hydrogen sorption capacities based on the packing volume. The use of consistent measurement protocols, common analysis, and figure of merits for reporting data in this study, enable the comparison of the results for two different materials. Importantly, the results show good agreement for excess gravimetric capacities amongst the laboratories. Irreproducibility for excess and total volumetric capacities is attributed to real differences in the measured packing volume of the material.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201900166DOI Listing

Publication Analysis

Top Keywords

volumetric capacities
8
excess total
8
total volumetric
8
packing volume
8
volumetric
5
international laboratory
4
laboratory comparison
4
comparison study
4
study volumetric
4
volumetric gravimetric
4

Similar Publications

Core-shell electrodes provide a potential and innovative approach for significantly enhancing the performance and capacity of supercapacitors (SCs) by combining two distinct materials. The capabilities of these advanced electrodes surpass those of conventional single electrodes. Specifically, these exhibit better energy storage, higher power density, and improved overall performance.

View Article and Find Full Text PDF

S-LaMoO solid solution: a sulfur cathode with a non-shaped matrix enables a better lithium-sulfur battery.

Mater Horiz

September 2025

Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.

A prefabricated matrix is normally used as the cathode host for lithium-sulfur batteries to address the shuttle effect problem. Unconventionally, herein we present a non-shaped matrix for a sulfur cathode that enables a better lithium-sulfur battery. The fast oxide-ion conductor LaMoO is introduced into the sulfur cathodes for the first time.

View Article and Find Full Text PDF

Thick electrode is a critical strategy to increase the energy density of lithium-ion batteries(LiBs) by maximizing the active material loading. However, their practical application is obstructed by kinetic limitations, including low charge transfer efficiency and poor mechanical stability, which severely decrease rate capability, cycling performance, and safety. This review focuses on an intensive analysis of the problems with thick electrodes in terms of ion transfer kinetics, electron transfer discontinuities, and poor mechanical stability.

View Article and Find Full Text PDF

Free-Standing Soft Carbon Fibers with High Orientation for Na Storage to Achieve High Volumetric Capacity.

J Phys Chem Lett

September 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

Noncrystalline carbon materials typically encounter challenges of low volumetric capacity, high discharge plateau, and poor rate capability when utilized as sodium-storage anode materials. The effect of the orientation of carbon layers in noncrystalline carbon materials on sodium storage behavior remains unclear. This study clarifies the sodium storage behavior of high-carbon layer orientation soft carbon fiber materials and reveals the desolvation process of their ordered carbon layer structures as well as pore structure filling and sodium deposition processes, which enhanced the sodium storage capacity.

View Article and Find Full Text PDF

One-step synthesis of rutile TiO nanorod clusters for high-rate sodium-ion storage.

Chem Commun (Camb)

September 2025

Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen 361005, China.

Rutile TiO nanorod clusters with a rod width of ∼15 nm are simply synthesized through a one-step hydrothermal method from low-cost raw materials, , CaTiO and BaTiO. Compared with TiO nanoparticles, densely packed TiO nanorod clusters exhibit a pseudocapacitive sodium-ion storage mechanism, achieving superior rate capability, volumetric capacity, and cycling stability.

View Article and Find Full Text PDF