98%
921
2 minutes
20
The lymphatics are a target for a range of therapeutic purposes, including cancer therapy and vaccination, and both vesicle size and charge have been considered as factors controlling lymphatic targeting. Within this work, a range of liposomal formulations were investigated to develop a liposomal lymphatic targeting system. Initial screening of formulations considered the effect of charge, with neutral, cationic and anionic liposomes being investigated. Biodistribution studies demonstrated that after intramuscular injection, anionic liposomes offered the most rapid clearance to the draining lymphatics with cationic liposomes forming a depot at the injection site. Anionic liposomes containing phosphatidylserine showed higher clearance to the lymphatics and this may result form preferential uptake by macrophages. In terms of vesicle size, smaller unilamellar vesicles gave high lymphatic targeting and a 10-fold increase in concentration was achieved in dose escalation studies. Given that effective trafficking to the lymphatics was achieved, the next step was to enhance retention of the liposomes within the lymphatics, therefore the liposome formulation was combined with an avidin/biotin complex mechanism. The affinity of avidin for biotin allows biotinylated liposomes to complex in the presence of avidin. By pre-dosing with avidin, the biotin-avidin complex can be exploited to promote longer retention of the liposomes at the draining lymphatics. To load these small, biotinylated liposomes with protein, microfluidics manufacturing was used. Using microfluidics, protein could easily be incorporated in these small (~90nm) biotinylated liposomes. Both liposome and protein retention at the local draining lymph nodes was demonstrated with the liposome-biotin-avidin system. These results demonstrate that microfluidics can be used to prepare protein-loaded liposomes that offer enhanced lymphatic targeting and retention of both the liposomes and entrapped antigen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2019.06.002 | DOI Listing |
Adv Pharm Bull
July 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
Lipid nanocapsules (LNCs) are an emerging nanocarrier platform for cancer therapy as they can co-deliver multiple drugs, promote synergistic action, and provide targeted drug delivery. The phase inversion temperature (PIT) process is most used for LNC formulation, which has the advantage of process simplicity, thermodynamic stability, and the employment of non-toxic solvents without requiring high energy input. Surface functionalization with targeting ligands like folic acid and peptides increases tumor specificity and reduces off-target toxicity.
View Article and Find Full Text PDFCrit Rev Immunol
September 2025
Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.
Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.
View Article and Find Full Text PDFFront Mol Neurosci
August 2025
Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.
Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.
Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.
Front Immunol
September 2025
Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland.
Toxocariasis, a neglected zoonotic disease caused by parasites of the genus, represents a significant public health concern, with an estimated global seroprevalence of 19%. Despite the well-known respiratory symptoms associated with toxocariasis, the immune response in the lungs during toxocariasis is still poorly understood. This study analyzes both local lung and systemic immune response to infection and excretory-secretory antigens (TES) intranasal application in C57BL/6J mice.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Pharmaceutics, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), State Key Laboratory of Discovery and Utilization of Fun
The effectiveness of antitumor immunotherapy is limited to immune cell infiltration into solid tumors, primarily via T-cell migration through tumor blood vessels. This study introduces a multifunctional nitric oxide (NO)-driven hollow gold Janus nanomotor (HAM) designed to promote tumor blood vessel normalization and increase T-cell infiltration, thereby enhancing the immune response against tumors. It is revealed that self-generated NO facilitates the penetration of HAM into tumors and increases pericyte coverage of blood vessels, thereby enhancing intratumoral T-cell infiltration.
View Article and Find Full Text PDF