Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Methanol, commercially generated from methane, is a renewable chemical feedstock that is highly soluble, relatively inexpensive, and easy to handle. The concept of native methylotrophic bacteria serving as whole cell catalysts for production of chemicals and materials using methanol as a feedstock is highly attractive. In recent years, the available omics data for methylotrophic bacteria, especially for , the most well-characterized model methylotroph, have provided a solid platform for rational engineering of methylotrophic bacteria for industrial production. In addition, there is a strong interest in converting the more traditional heterotrophic production platforms toward the use of single carbon substrates, including methanol, through metabolic engineering. In this chapter, we review the recent progress toward achieving the desired growth and production yields from methanol, by genetically engineered native methylotrophic strains and by the engineered synthetic methylotrophs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21775/cimb.033.225 | DOI Listing |