98%
921
2 minutes
20
Titin is largely comprised of serially-linked immunoglobulin (Ig) and fibronectin type-III (Fn3) domains. Many of these domains are arranged in an 11 domain super-repeat pattern that is repeated 11 times, forming the so-named titin C-zone in the A-band region of the sarcomere. Each super-repeat is thought to provide binding sites for thick filament proteins, such as cMyBP-C (cardiac myosin-binding protein C). However, it remains to be established which of titin's 11 C-zone super-repeats anchor cMyBP-C as titin contains 11 super-repeats and cMyBP-C is found in 9 stripes only. To study the layout of titin's C-zone in relation to MyBP-C, immunolabeling studies were performed on mouse skinned myocardium with antibodies to titin and cMyBP-C, using both immuno-electron microscopy and super-resolution optical microscopy. Results indicate that cMyBP-C locates near the interface between titin's C-zone super-repeats. Studies on a mouse model in which two of titin's C-zone repeats have been genetically deleted support that the first Ig domain of a super-repeat is important for anchoring cMyBP-C but also Fn3 domains located at the end of the preceding repeat. Furthermore, not all super-repeat interfaces are equal as the interface between super-repeat 1 and 2 (close to titin's D-zone) does not contain cMyBP-C. Finally, titin's C-zone does not extend all the way to the bare zone but instead terminates at the level of the second myosin crown. This study enhances insights in the molecular layout of the C-zone of titin, its relation to cMyBP-C, and its possible roles in cardiomyopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639027 | PMC |
http://dx.doi.org/10.1016/j.yjmcc.2019.05.026 | DOI Listing |
Unlabelled: Low-angle X-ray diffraction is a powerful technique for analyzing the molecular structure of the myofilaments of striated muscle in situ. It has contributed greatly to our understanding of the relaxed, 430-Å-repeating organization of myosin heads in thick filaments in skeletal and cardiac muscle. Using X-ray diffraction, changes in filament structure can be detected on the Å length scale and millisecond time scale, leading to models that are the foundation of our understanding of the structural basis of contraction.
View Article and Find Full Text PDFJ Muscle Res Cell Motil
December 2023
Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
The thick filament-associated A-band region of titin is a highly repetitive component of the titin chain with important scaffolding properties that support thick filament assembly. It also has a demonstrated link to human disease. Despite its functional significance, it remains a largely uncharacterized part of the titin protein.
View Article and Find Full Text PDFJ Mol Cell Cardiol
April 2022
Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America. Electronic address:
Titin's C-zone is an inextensible segment in titin, comprised of 11 super-repeats and located in the cMyBP-C-containing region of the thick filament. Previously we showed that deletion of titin's super-repeats C1 and C2 (Ttn model) results in shorter thick filaments and contractile dysfunction of the left ventricular (LV) chamber but that unexpectedly LV diastolic stiffness is normal. Here we studied the contraction-relaxation kinetics from the time-varying elastance of the LV and intact cardiomyocyte, cellular work loops of intact cardiomyocytes, Ca transients, cross-bridge kinetics, and myofilament Ca sensitivity.
View Article and Find Full Text PDFJ Mol Cell Cardiol
August 2019
Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA. Electronic address:
Titin is largely comprised of serially-linked immunoglobulin (Ig) and fibronectin type-III (Fn3) domains. Many of these domains are arranged in an 11 domain super-repeat pattern that is repeated 11 times, forming the so-named titin C-zone in the A-band region of the sarcomere. Each super-repeat is thought to provide binding sites for thick filament proteins, such as cMyBP-C (cardiac myosin-binding protein C).
View Article and Find Full Text PDFNat Commun
October 2017
Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, 85721, USA.
The contractile machinery of heart and skeletal muscles has as an essential component the thick filament, comprised of the molecular motor myosin. The thick filament is of a precisely controlled length, defining thereby the force level that muscles generate and how this force varies with muscle length. It has been speculated that the mechanism by which thick filament length is controlled involves the giant protein titin, but no conclusive support for this hypothesis exists.
View Article and Find Full Text PDF