98%
921
2 minutes
20
Microbial production of lipids provides important alternative sources for a variety of fine chemicals and fuels. With the development of biotechnology, genetic engineering approaches are widely used to increase lipid production in microbes, as well as to alter the lipid profile with unique physicochemical properties. In this chapter, based on the well-known information of de novo lipid accumulation mechanisms in microbes, genetic engineering strategies at the direction of increased supply of substrates, regulation of lipid synthesis pathway, regulation of lipid catabolic pathway, and regulation of lipid profiles are described. These methods provide promising insights to promote the optimization of lipid accumulation and properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9484-7_8 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
Adrenal lipomas are benign tumors containing ectopic adipose tissue in the adrenal gland, an organ that normally lacks both adipocytes and their progenitors. The origin of this ectopic fat remains enigmatic, and the absence of a genetic animal model has hindered its investigation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P], a key signaling lipid that regulates cellular growth and differentiation, is tightly regulated by the lipid phosphatases PTEN (phosphatase and tensin homolog) and SHIP2 (SH2-containing inositol phosphatase 2).
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
Marine-derived enzymes often show distinct physiological properties and great potential for industrial use. Salt ions may improve the stability and expression efficiency of marine enzymes, which requires salt-resistant host based expression platform. Aspergillus oryzae of good protein expression and secretion was evaluated and explored for this purpose.
View Article and Find Full Text PDFInt J Health Care Qual Assur
September 2025
Department of Electrical and Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran.
Purpose: Neonatal mortality is a significant global health issue, particularly in low- and middle-income countries. This study aims to identify and understand the factors contributing to high neonatal mortality rates in the cities of Kerman and Bam, Iran, to develop effective strategies for improvement.
Design/methodology/approach: We employed systems dynamics to develop Causal Loop Diagrams that capture qualitative interactions among determinants of neonatal mortality.
Invest Ophthalmol Vis Sci
September 2025
Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, New York, United States.
Purpose: To characterize a no b-wave (nob) mouse model of congenital stationary night blindness (CSNB) caused by a Grm6 variant that disrupts photoreceptor-to-bipolar cell signaling. Additionally, we aim to evaluate the efficacy of gene therapy in restoring visual function.
Methods: The nob mouse was generated through selective breeding to regenerate the nob phenotype.
J Pathol
September 2025
Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.
Serous endometrial carcinoma (SEC) is one of the most lethal types of uterine cancer, responsible for about 40% of all endometrial cancer-related deaths. Cell state dynamics during the early stages of SEC remain largely unknown, thereby hindering early detection and treatment of this disease. Here, we provide a comprehensive census of cell types and their states for normal, predysplastic, and dysplastic endometrium in a genetic mouse model of SEC.
View Article and Find Full Text PDF