Community Noise and Air Pollution Exposure During the Development of a Multi-Well Oil and Gas Pad.

Environ Sci Technol

Department of Environmental and Occupational Health, Colorado School of Public Health , University of Colorado Anschutz Medical Campus, Aurora , Colorado 80045 , United States.

Published: June 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unconventional oil and gas development (UOGD) in the United States is increasingly being conducted on multiwell pads (MWPs) and in residential areas. We measured air pollution, noise, and truck traffic during four distinct phases of UOGD: drilling, hydraulic fracturing, flowback, and production. We monitored particulate matter (PM), black carbon (BC), A-weighted (dBA), and C-weighted (dBC) noise using real-time instruments on 1 and 5 min time scales, and truck traffic for 4-7 days per phase at a large 22-well pad sited in a residential area of Weld County, Colorado. Hydraulic fracturing, which requires frequent truck trips to move supplies and diesel engines to power the process, had the highest median air pollution levels of PM and BC and experienced the greatest number of heavy trucks per hour compared to other phases. Median air pollution was lowest during drilling at this MWP, possibly because an electric drill rig was used. The equivalent continuous noise level ( L) exceeded guidelines of 50 dBA and 65 dBC for A-weighted and C-weighted noise, respectively, during all development phases. Our data show that these multiple stressors are present around the clock at these sites, and this work provides baseline measurements on likely human exposure levels near similarly sized MWPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b00052DOI Listing

Publication Analysis

Top Keywords

air pollution
16
oil gas
8
truck traffic
8
hydraulic fracturing
8
median air
8
community noise
4
air
4
noise air
4
pollution
4
pollution exposure
4

Similar Publications

Urbanization and increasing vehicular traffic have intensified air pollution, particularly the accumulation of particulate matter (PM), trace elements (TEs), and polycyclic aromatic hydrocarbons (PAHs) in urban environments. These pollutants pose significant risks to human health, urban ecosystems, and biodiversity. This study evaluates the efficacy of mixed-species vegetation barriers, comprising , , , and , in mitigating air pollution along three road types (highway, urban, and suburban).

View Article and Find Full Text PDF

Air pollution and long COVID: association with pulmonary function and radiological abnormalities 3-15 months post-COVID.

Environ Res

September 2025

Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.

While studies have examined associations between air pollution and subjective long COVID outcomes such as fatigue and symptoms, no studies have focused on objective lung health measures. This study aimed to assess the impact of air pollution, examined through different exposure methods (exposures assigned via geospatial model, versus residential and personal measurements) on pulmonary function and radiological abnormalities in long COVID patients. We recruited 95 patients who attended a hospital outpatient clinic 3-6 months post-infection, during which pulmonary function was assessed via spirometry (FEV1,FVC,FEV1/FVC ratio) and diffusion capacity for carbon monoxide (DLCO), along with a chest CT.

View Article and Find Full Text PDF

Air pollution and diseases: signaling, G protein-coupled and Toll like receptors.

Pharmacol Ther

September 2025

Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. Electronic address:

Air pollution is a significant public health issue that impacts lung health, particularly in vulnerable populations such as children, the elderly, and individuals with pre-existing respiratory conditions. Both natural and anthropogenic sources of air pollution give rise to a variety of toxic compounds, including particulate matter (PM), ozone (O₃), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), and polycyclic aromatic hydrocarbons (PAHs). Exposure to these pollutants is strongly associated with the development and exacerbation of respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and idiopathic pulmonary fibrosis (IPF).

View Article and Find Full Text PDF

Sichuan Basin (SCB) is a critical region in China facing the dual pressures of air pollution and population aging. This study constructed high resolution (1 km) PM datasets for SCB using advanced machine learning approaches - Super Resolution Generative Adversarial Networks (SRGAN) and Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM). Evaluation results demonstrate good performance of the machine learning model (SRGAN: R = 0.

View Article and Find Full Text PDF

Longer, more severe wildfire seasons are becoming the norm in fire-prone areas. Prescribed burning is a tool used to mitigate wildfire spread. However, prescribed burning also contributes to air pollution, including PM (particulate matter with aerodynamic diameter <= 2.

View Article and Find Full Text PDF