Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide.

Food Chem

QOPNA - Organic Chemistry, Natural and Agro-Food Products Research Unit, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

Published: October 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soy protein hydrolysates (SPH) with different degrees of hydrolysis (DH 0-16%) were obtained by varying the time of hydrolysis with bromelain. The objective of this study was to evaluate how selected techno-functional properties (gelation, emulsification) of SPH were affected by the presence of a non-gelling polysaccharide. A slight hydrolysis was beneficial to increase gel strength. Also, the emulsifying activity was improved for low DHs, whereas hydrolysis was detrimental for emulsion stability. Under certain conditions the presence of the non-gelling polysaccharide was beneficial to improve SPHs' functional properties, but the effect was in general complex and strongly dependent on both biopolymers' concentration and molecular weight. Nevertheless, it was demonstrated that by using SPH and galactomannan mixtures and controlling the biopolymers' concentration and molecular weight, improved functionalities can be obtained with useful applications in food formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2019.05.039DOI Listing

Publication Analysis

Top Keywords

soy protein
8
protein hydrolysates
8
presence non-gelling
8
non-gelling polysaccharide
8
biopolymers' concentration
8
concentration molecular
8
molecular weight
8
gelling emulsifying
4
emulsifying properties
4
properties soy
4

Similar Publications

This study developed a vegan chocolate spread using spray-dried plant-based milk powders (soy, lentil, and rice), fortified with nano-liposomal vitamin D3 and an oleogel-balanced omega fatty acid to enhance nutritional quality. The plant-based milk powders exhibited high protein (up to 26.8% in soy), fiber, and micronutrients.

View Article and Find Full Text PDF

Symbiosis: A SWEET deal for nodules.

Curr Biol

September 2025

Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia.

A new study shows that sucrose allocation within soybean roots by the sucrose transporter GmSWEET3c promotes rhizobial infection, nodulation, and symbiotic nitrogen fixation.

View Article and Find Full Text PDF

For recovering whey soybean protein (WSP) from soybean whey wastewater (SWW) in food industry, a foam separation method for separating WSP by using temperature-responsive Janus sheets (MF-JNSs-PN) as foam stabilizer was established. MF-JNSs-PN was prepared by grafting the temperature-responsive polymer PNIPAM onto one side of the sheet inorganic material using BSA@Cu(PO)-MF as the template. MF-JNSs-PN has a good ability to stabilize the foam due to inducing the hydrophilicity and hydrophobicity transition by adjusting the temperature.

View Article and Find Full Text PDF

Oil Delivery to Bovine Satellite Cells in Cultivated Meat by Soy Protein Colloidosomes.

ACS Appl Mater Interfaces

September 2025

Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel.

Cultivating fat for edible tissue presents significant challenges, due to the high costs associated with growth and differentiation factors, alongside the poor viability of adipocytes resulting from cell clustering. Additionally, there is a gap in research regarding the rapid accumulation of fats within cells. To that end, this study presents the development of a biodegradable soy protein colloidosome system for an efficient application: direct delivery of oils into bovine satellite cells, enabling rapid intracellular fat accumulation without the need for adipogenic differentiation.

View Article and Find Full Text PDF

This study investigated the effects of soy isoflavone yeast fermented extract (soyF) and soy isoflavone yeast unfermented extract (soyN) on rat ileal smooth muscle contraction. SoyF and soyN inhibited carbachol (CCh)- or KCl-induced contraction in a concentration-dependent manner; however, these effects were stronger for CCh-induced contraction than that for KCl, and the relaxation effect was stronger for soyF than for soyN. SoyF-induced relaxation was attenuated by 4-aminopyridine (4-AP), a Kv channel inhibitor, and iberiotoxin (IbTX), a calcium-activated potassium channel (BK channel) inhibitor.

View Article and Find Full Text PDF